AD-A232 889

ALUSH

Final Technical Report for

Grant AFOSR-84-0181
NONLINEAR REAL-TIME OPTICAL SIGNAL PROCESSING

A. A. Sawchuk, Principal Investigator

Signal and Image Processing Institute
University of Southern California
Mail Code 0272
Los Angeles, California 90089-0272
(213)743-5527

Research Sponsored by the

Air Force Office of Scientific Research
Electronics and Materials Science Division
AFOSR/NE
Bolling AFB, Bldg. 410
Washington, D.C. 20332

Performance Period: 1 July 1984 - 31 January 1990

The United States Government is authorized to reproduce and distribute reprints for Govern-

mental purposes notwithstanding any copyright notation hereon. /... .
[ .

DTIC

ELECTE
MAR 14 1991,

01 2 11 12




iJN(,’l AnSLELBEY

SECORITY CLASSIFICATION OF THIS PAGE

SECURI

. REPORT DOCUMENTATION PAGE

Fonr; Approved
OMB No. 07040188

"2 REPORT SECURITY CLASSIFICATION
IINCLASSIFIED

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION / AVAILABILITY OF REPORT The United States
Government is authorized to reproduce and

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

distribute reprints for governmental purposcs

4, PERFORMING ORGANIZATION REPORT NUMBER(S)

5. MONITORING -ORGANI. ¢/ R

6a. NAME OF PERFORMING ORGANIZATION
Signal and Image Processing Insg.
Univ. of Southern California

6b. OFFICE SYMBOL
(If applicable) .

7a. NAME OF MONITORING ORGANIZATION

S Ja

6c. ADDRESS (City, State, and 2IP Code)
MC-0272
Los Angeles, CA 90089

7b. ADORESS (City, State, and ZIP Code)

@ Qine (47 /Qd/

8b. OFFICE SYMBOL

8a. NAME OF FUNDING / SPONSORING
(1f applicabler™

_ ORGANIZATION o
Air Force of Scientific Research

9. PROCUREMENT INSTRUMENT IOENTIFICATION NUMBER

/72[&3’[ 54/@?/

8c. ADDRESS (City, State, and ZIP Code)

Bldg. 410, Bolling AFB
Washington, D.C. 20332

10. SOURCE OF FUNDING NUMBERS *
PROGRAM PROJECT
NO

ELEMENT NO. . _
S5

Vs

WORK UNIT
ACCESSION NO.

TASK
NO

4/

11. TITLE (Include Security Classification)

Nonlinear Real-Time Optical Signal Processing

12. PERSONAL AUTHOR(S)
A.A. Sawchuk

13a. TYPE OF REPORT 13b. TIME COVERED

Final Technical fROM 7/1/84 10 _1/31/9

15. PAGE COUNT
127

14. DATE OF REPORT (Year, Month, Day)
1990 September 1

16. SUPPLEMENTARY NOTATION

COSATI CODES
GROUP SUB-GROUP

17.
FIELD

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Optical Computing
Optical Signal Processing

19. ABSTRACT {(Continue on reverse if necessary and identify by block number)

During the period 1 July 1984 - 31 January 1990, the research under Grant AFOSR-84-0181 has
been concerned with binary parallel optical computing architectures with particular attention to cellular
logic and symbolic substitution for pattern recognition and numerical operations. Our approach has
been to experimentally implement binary optical cellular logic processors and interconnection arrays;
define an instruction set and software suited to optical computing systems; and to study generalizations
of optical cellular logic processors such as the cellular hypercube. The results include the experimental
unplementation of a 54-gate binary optical cellular logic processor with instruction decoders, input/output,
memory and test/branch functions; the completion of a binary image algebra (BIA) description of cellular
logic, image analysis and symbolic operations; and the development of binary image algebra algorithms
for scale and shift invariant pattern recognition. Additional work concerns the relationship of parallel
computation paradigms to optical computing and halftone screen techniques for implementing general
nonlinear functions.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT

21. ABSTRACT SECURITY CLASSIFICATION

O uncrassiFieoynumiteo [ same as ret.

[3J oTiC USERS

22a. NAME OF RE?" zsugLs INOIVIDUAL

~LINCLASSIETED
22c. o;{yzvmam

PR

DO Form 1473, JUN 86

Previous editions are obsolete.

SECURITY CLASSIFICATION_OF THIS PAGE




Contents

1 Summary 3
2 Research Progress _ 4
2.1 Digital Optical Parallel Computing Systems . . . . . ... ... .. .. ....... 4
2.2 Optical Cellular Logic Processors . . . . . ... ... ... ... .. ... ..... 7
2.3 Binary Image Algebra . . . . ... L 14
24 Nonlinear Optical Processing with Halftones: Degradation and Compensation
Models . . . . . . . . . 90
2.5 Optical Symbolic Substitution and Pattern Recognition . ... ... .. ... ... 99
2.6 Parallel Processing and Optical Computing . . . .. ... ... .. ......... 107
2.7 Acoust-optic Signal Processing . . . ... ... ... ... . 116
3 Written Publications 120
4 Professional Personnel and Advanced Degrees 124
5 Interactions (Coupling Activities) 125

Accession For

NTIS GRAXL
DTIC TaAB
Unannounced
Justification

oo
@‘x

By

| Distribution/

Availability Codes

9 Avall anda/er
Dist Speaiald

pA




1 Summary

During the period 1 July 1984 - 31 January 1990, the research under Grant AFOSR-84-0181 has
been concerned with binary parallel optical computing architectures with particular attention
to cellular logic and symbolic substitution for pattern recognition and numerical operations.
Our approach has been to experimentally implement binary optical cellular logic processors and
interconnection arrays; define an instruction set and software suited to optical computing systems;
and to study generalizations of optical cellular logic processors such as the cellular hypercube. The
results include the experimental implem;ntation of a 54-gate binary optical cellular logic processor
with instruction decoders, input/output, memory and test/branch functions; the completion of a
binary image algebra (BIA) description of cellular logic, image analysis and symbolic operations;
and the development of binary image algebra algorithms for scale and shift invariant pattern
recognition. Additional work concerns the relationship of parallel computation paradigms to

optical computing and halftone screen techniques for implementing general nonlinear functions.
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2 Research Progress

This section summarizes research progress and accomplishments for the period 1 July 1984 -
31 January 1990 on Grant AFOSR-84-0181 for Nonlinear Real-Time Optical Signal Processing.

These results are discussed separately in the sections that follow.

2.1 Digital Optical Parallel Computing Systems

We have continued work on an experimental sequential optical binary parallel architecture that is
constructed from an array of binary opti"i:al switching elements (NOR gates) with interconnections
done by a computer-generated hologram. We examined new binary array spatial light modulators
(SLM’s), high efficiency, high space-bandwidth product (SBWP) interconnection holograms, and
compact reflection versions of the general architecture with the intent of building a larger demon-
stration system with greater capabilities. We have studied improved methods of providing the
interconnections in these systems by the use of hybrid digital/analog (facet) holograms. A final
area of study has been to examine in detail algorithms that are well-suited for implementation
on the parallel binary architectures described previously. We have defined several methods for
building binary and arithmetic cellular logic processors and have determined some limits due to
hologram complexity, gate density, etc.

A reprint describing the general types of system under consideration is included for reference.
the paper, by B.K. Jenkins and A.A. Sawchuk, is “Binary Optical Computing Arc.itectures”,

Optics News, Vol. 12, No. 4, pp. 25-26, 1986.
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magine two possible paths for this development:
olution or a revolution.

For the moment, optical components are used 4par-
ingly in predominantly electronic computers. op-
efating mode of the optical devices is dictated/by the
exlsting structure of the computer which in has
bean shaped by the characteristics of semigonductor
devices. As optics is increasingly used in fomputers,
it will perhaps become apparent that th¢ traditional
advantages of optical computing can b used to en-
hance \he capability of these optical cgmponents.

For instance, if optical memories bgcome common-
place, it will be inevitable that parall¢] access of these
memories\will be attempted in oytler to get to the
stored infoxmation faster, which will probably create
a communidation bottleneck in afAraditional comput-
ing structure\ This may bring abglit the need for more
extensive global communicatiorf between the memo-
ry and the prodessing elementy in the computer, and
this, in tumn, require an gptical solution for the
communication pxoblem that fhe optical memory cre-
ated.

Evolutionary protesses of this type are certain to
occur. The only questjon isfhow far they will go. Will
enough optical deviceX andl optical techniques even-
tually be inserted in an\eJectronic computer to allow
us to call this machine Jan optical computer rather
than an electronic compl\er with some optical com-
ponents?

I don't think the answer % this question is impor-
tant. What is importan{ is the Yealization that if optical
components are useq in computers, then there is a
tremendous potentia) for imprivement in the perfor-
mance through “opfical computing”™ ideas and tech-
niques.

The evolutionary path to optica} computing, as out-
lined above, is sgmething that not planned by
anybody. Most of us working on ‘pptical computers
imagine their d¢velopment as a re\olution; we start
with a new techhology (optics), and §nd new ways to
solve problemg/that are suited to this technology, and
we find a newset of important problelys to solve that
present computers have a hard time With. The suc-
cessful pathtowards the development of\such radical-
ly new confputers is, needless to say, nof\certain and
not yet unjversally agreed upon.

In order to be competitive with the \well-en-
trenched semiconductor technology, it is ifyportant
that w¢ identify clearly the comparatively advanta-
geous features of optics and try to make the be\t use
possiple of them. Global communication and th ca-
pacity for dense storage of information are two of\the
strohg suits of optics. We ought to be able to find

s to store large amounts of information optically,
arjd also have ways to retrieve this information ve
quickly using optical communication.

If we do this successfully, then we are left with §
huestion of how to process all this information w¢are

Neving. The possible answers may lie in thé area
of nedyqal network models.

A nedpal network is a very large collectioh of neu-
rons (perhaps 100 billion of them), with pach neuron
being connected to thousands of others capabili-
ty to store latge amounts of informatiof and the abili-
ty to get to this\\nformation quickly ghd efficiently are
what give neural networks their gdmputational pow-
er. This is accomplished by storipig the information in
the interconnectiond among thé neurons, which is a
most ingenious way th avoid bottlenecks in trying to
get to the stored informitioy’.

The problems that neuryd networks are particularly
good at (recognition of i {ades and speech, classifa-
tion of patterns, and associabipns) are problems that
electronic computers e particylarly poor at solving.
There is an excellenymatch between the capabilities
and strengths of opfics and neural networks. There-
fore, if we can obthin some insights fom the work of
biologists and otffers who study neuraknetworks, this
can prove veryhelpful in our effort to design optical
computers.

A natural dompatibility has emerged between the
requirements of problems typically encountered in
artificial jhtelligence, the ways that such proklems -
are solvgd by a neural network, and the capabilitidg . ©
optics,/The development of optical computers that ¢ -
ploit/this compatibility is one of the exciting an
prothising prospects for the future of the field.

Binary Optical
Computing
Architectures

BY B. KEITH JENKINS AND

ALEXANDER M. SAWCHUK

SIGNAL AND IMAGE PROCESSING INSTITUTE
UNIVERSITY OF SOUTHERN CALIFORNIA
LOS ANGELES, CALIF.

inary panallel optical computing architectures
differ greatly from traditional optical analog
and numerical processors. The potential advan-

tages of these architecutres are:
s They offer fexibility of operations—numerical,
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Binary parallel optical computing
architectures differ greatly from
traditional optical analog and
numerical processors: they offer the
possibility of high throughput and
processing speed with arrays of fast
optical switches that are being
developed.

symbolic or logical, compared to analog or discrete
multilevel processors;

@ They have binary digital accuracy and dynamic
range;

& They offer computing architectures very different
from electronic very large scale integration (VLSI):
they permit global interconnections and parallel in-
put-output compared to the local interconnections,
clock-skew problems, pin-in/pin-out and bus limita-
tions of very large scale integration (VLSI);

& They utilize the 2-D parallel nature of optical de-
vice arrays and low interaction of optical signals for
interconnections in 3-D; and

u They offer the possibility of high throughout and
processing speed with amays of fast optical switches
that are being developed.

mierconnection unit
(computer generoted hologrom)
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An optical digital computing architecture with global
interconnections.
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The figure shows one concept of an optical sequen-
tial logic system with global interconnections. An ex-
perimental system based on this concept has been
built. The gate array at the bottom is a 2-D amay of
optical NOR gates formed on the surface of a liquid-
crystal light valve or other spatial light modulator hav-
ing an array of optically activated switching elements.
The light valve operates in transmission, so that the
inputs are applied on the left side of the device (hid-
den in the figure), while the outputs are obtained on
the right side of the device.

With this arrangement, optical signal inputs and
outputs are accessible in parallel. An interconnection
unit (which is currently a computer generated holo-
gram) connects gate outputs to gate inputs in a very
general way and forms the “wiring.” The gate inter-
connections can be global or local with equal ease,
because a third dimension is utilized and optical sig-
nals can propagate through each other with minimal
effective interaction. Components such as flip-flops,
registers, memory, instruction decoders, arithmetic
logic units, and central processing units are defined
by a fixed wiring pattern. The resulting machine
could, in principle, be general-purpose or special-
purpose, and could be programmable.

The interconnection wiring can be altered by
changing the hologram; thus a binary optical comput-
er with dynamically reconfigurable wiring is a possi-
bility. A wide variety of hologram encoding tech-
niques can be utilized, and the gate array may contain
=10 or 10° gates. One important aspect of this system
is that it can be configured as a binary parallel com-
puter, which is very different from traditional archi-
tectures. :

An experimental version of the system in the figure
has been implemented. The system is an all-optical
16-gate digital sequential circuit, including clock and
flip-flop, implemented using a Hughes liquid-crystal
light valve. The system contains a high-resolution
computer-generated hologram for gate interconnec-
tion, which was made on an electron-beam integrated
circuit mask writer. Many different optical systems
using different types of computer-generated holo-
grams can be used for the interconnections; current
research is concemed with comparing various alter-
natives and improving hologram resolution and flexi-
bility.

Several computationally demanding practical prob-
lems such as parallel digital image processing and im-
age analysis are well-matched to this architecture. In
the future, a large (=10° gates) 2-D array of binary
switching (threshold) or bistable devices, preferably
all-optical (optical input and output) could be used in
the system, which could provide nanosecond switch-
ing times. Many altemative technologies exist; they
must be compared and evaluated.

- — .. —————— — —————
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2.2 Optical Cellular Logic Processors

We have continued work on optical cellular logic processors (CLP’s) and other parallel digital

processing architectnres that are well-suited for implementation on the sequential optical archi-
tecture described in the previous section. Optical CLP’s are well matched to this archiiecture
because they are a 2-D, page oriented array of individual processors located at every pixel of a
! large image. The attached paper by B.K. Jenkins and A.A. Sawchuk, “Optical Cellular Logic
Architectures for Image Processing”, from IEEE Computer Society Workshop on Computer Ar-
chitectures for Pattern Analysis and Irriage Database Management, November 1985, summarizes

some of these concepts. Work in progress includes studies on the implementation of cellular hy-

percubes and pyramids, which are not feasible for electronic VLSI, but offer important advantages

for improved image processing.




OPTICAL CELLULAR LOGIC ARCHITECTURES FOR IMAGE PROCESSING

B.K. Jenkins and A.A. Sawchuk

Signal and Image Processing Institute
Electrical Engineering - Systems Department
Uaiversity of Southern California
Los Angeles, California 90089.0272

ABSTRACT

A digital optical processing system consisting of optical
gates and optical interconnections is described. Its concept
has been demonstrated experimentally. The implementation
of an optical cellular logic processor is considered. Optical
systems for interconpections are given, and the architectural
characteristics of such optical cellular logic machines are dis-
cussed and compared with electronic machines.

L. INTRODUCTION

In the optical processing community there has been a
substantial amount of research in the area of optical image
processing and pattern recognition. Most of the systems to
date have been analog, and have the potential of processing
large amounts of data in parallel and at high speeds. How-
ever, their analog nature limits both the accuracy and the
range of operations that can be achieved with a given sys-
tem. A digital optical system holds the promise of alleviat-
ing these restrictions while maintaining some of the advan-
tages of optical systems. A cellular logic processor is one
possible use of such a digital optical computer.

The current interest in digital optical computing can be
largely attributable to two developments: (1) recent progress
in optical materials and devices useful for the implementa-
tion of gates, including improvements in size, potential
manufacturability, cascadability, and especially switching
energy; and (2) the realization that optical systems could
have significant advantages over electronic computers in cer-
tain application areas. These advantages are due primarily
to the optical interconnections, and include the abilities to
implement large numbers of interconaecting lines with little
or no regard for their length. This stems primarily from the
fact that electrons interact at a distance whereas photoas do
pot. These advantages will be discussed in more detail
below.

In this paper we will review some of our work in digital
optical computing, and discuss the possible optical
implementation of a cellular logic processor sad some of its
architectural characteristics. A general review of digital opt-
ical computing is given in Ref. 1.

II. OPTICAL LOGIC SYSTEM

An optical logic system can be built out of optical gates
and interconnections. If these interconnections iaclude a
provision for feedback, then clocks and memory csa con-
structed in addition to combinatorial logic. These are the
minimum hardware requirements to be able to implement, in
principle, arbitrary digital processing operations. We have

demonstrated an optical logic system that includes these ele-
ments; it allows large numbers of interconnections between
gates. It is described in this section. We also point out that
?ther digital optical -processing systems have been described
1].

In our system a 2-D array of gates is combined with an
optical holographic interconnection system to create a gen-
eral optical sequential logic system. Its inherent 3-D struc-
ture provides for a high degree of interconnection fexibility.
The idea is to take the array of gate outputs and send it

through a holographic system back to the array of gate

inputs (Fig. 1). The holographic system conpects the output
of each gate to inputs of other gates, effectively wiring up a
circuit. For ease of maaufacture, the holograms can be gen-
erated by (electronic) computer and written out using s
computer plotting device. We have experimentally demoan-
strated the concept of this system with a 16-gate circuit. Io
this section we will discuss the gate array and interconnec-
tion system.

2-D arrays of optical gates demonstrated to date have
one drawback or another that preclude their use in a practi-
cal, competitive optical optical logic system. While current
devices can implement 10° to 10° gates in one array, in most
cases the major drawback is the extremely slow speed of the
devices. (Typical response times are > 1 ms.} Recent pro-
gress in the area of optical bistability, however, provides
hope for fast optical logic systems. To date their demoas-
trations have been primarily on individual (single gate) dev-
ices, but in principle they can be used for 2-D arrays as well.
Gate switching times on the order of ns have been demon-
strated [2), and there is potential for even much [aster gates
[3,4] (although other considerations such as power may limit
the usable response time in a system to ~ ns). Maay of
these devices are all optical (intrinsic) in that the signal is
pot converted to electrons and then back to photons again
in order to obtain the nonlinearity. This is one of the rea-
sons (or their speed advantage. For a review of optical bis-
tability, the reader is referred to [5,6].

We have previously described three different optical
interconnection systems for interconnecting the gates 7.
All of them use holograms in conjunction with free-space
propagation. Their characteristics differ and this manifests
itself in the kinds of circuits and processors that can be
implemented most efficiently with each system. Here we dis-
cuss one of the systems, which is a hybrid space-
variant/space-invariant system. This system has the most
general applicability and is the most pertinent to cellular
logic ptocessors. A review of all three systems can be found
in Ref. 8.

The hybrid interconnection system represents a basis-

[EEE Computer Society Workshop on Computer Architecture for Pattern Analysis and Image

Datsbase Management, November 1985
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Fig. 1. Functional block diagram of sequential optical
logic system.

set approach to interconnections. The optical system con-
sists of two holograms and two or more lenses. The ides is
to define a finite number, M, of distinct interconnection pat-
terns, and then assemble tne circuit using only these M pat-
terns. A circuit with only one interconnection pattern is
shown in Fig. 2 - all gate outputs have exactly. the same
interconnection pattern. We generally expect that' 1 << M
<< N, where N is the number of gates. Each different
interconnection pattern is essentially stored in oaly one
place on the hologram, and many gate outputs can use this
same interconnection in a non-interfering manper. In addi-
tion, once the necessary set of interconnection patterns is
defined, it may be possible to determine a smaller basis set
of new interconnection patterns that still achieves all inter-
connections [9]. If s0, M is reduced even more. The number
of gates and interconnection patterns that are implemented
determine the complexity of the holograms. The hologram
complexity that can be achieved is limited by the capabili-
ties of recording devices (e.g., computer plotting devices).
Calculations indicate that with current plotting devices, if
there are M = 50 interconnection patterns, then N ~ 107
gates can be interconnected {7]. Increasing M will decrease
N, such that MN is constant. (We expect {uture gate arrays
to have ~ 10% poesibly up to 107, gates.) Thus with this
approach the designer has some minor limitations on the
interconnections which can be used, but he has a potentially
large number of gates st his disposal.

Of course, with a large enough M, any circuit can be
implemented. However, the potential of this system can be
exploited more fully by implemeating circuits with a high
degree of regularity or symmetry. Anr example is a processor
array. Typically interconnections between processing ele-
ments (PEs) have a considerable amount of regularity, which
can reduce the size of M. Examples iaclude mesh-connected
arrays, pyramids, and hypercubes. The interconnections
within each PE may be completely arbitrary. The fact that
many of the PEs would typically be identical provides a
major reduction in M, since each interconnection pattern is
stored only once. We also point out that whether the inter-
connections are global or local has essentially no effect on M
or N.

We have experimentally demonstrated the concept of
this optical logic system. An array of NOR gates was used
with an interconnection system that uses a single hologram.
A test circuit consisting of 16 gates was implemented. [t
comprises a synchronous maater-slave fip-op aad a driving
clock consisting of an odd number of inverters in a (eedback
loop. This experiment and its results are described in Ref.
10.

Fig. 2. Example of only one interconnection pattern
being used for all gate outputs (M=1).

1. COMPARISON OF DESIGN CONSTRAINTS

The design of processors and computers in any technol-
ogy is constrained by the inherent characteristics of the
technology. In this section we compare some of these con-
straints for electronic and optical systems and discuss how
they affect system architectures.

Since the development of electronic LSl and VLSI, the
cost of individual gates has constituted only a minor factor
in the overall system cost function. The major concern has
become internal and external commuaications [11,12]. The
internal wiring network aflects the amount of active chip
area available for gates; in current systems it is common for
more than 70% of the chip area to be devoted to intercon-
nections {13]. Because of the resistance and parasitic capaci-
tance associated with each on-chip wire, the response time of
a gate and the propagation delay of a wire both become
functions of the length of the wire. Timing and clock skew
become problems because of the differing wire lengths
{14,15). (Although the wire resistance can be reduced by
process technology, e.g., using thick metal layers, it appears
that the wire lengths will still be a limiting factor in the sys-
tem timing considerations {16].) Another restriction related
to interconnections is the limited number of pin-outs which
becomes more apparent as the number of gates per chip
increases. One result of these restrictions is the need to
minimize the number and length of intercoanections.

For optical logic systems, the major design considera-
tions are admittedly not so well defined as for VLSI, but it
is clear that the cost function is much differeat. In particu-
lar, most of the communication costs affecting VLSI design
are not associated with optical systems. An optical system
can be made so that all interconnections have the same
length to first order. (For example, this is the case in the
optical logic system described in Sec. Il.) Thus syachroniza-
tion problems due to clock skew can be eliminated, making
large synchronized systems mote feasible. Being able to syn-
chronize the circuits eliminates the need for handshaking or
other asynchronous techniques which introduce waiting time
for individual circuit elements. The other design constraints
associated with wire length, namely power consumption and
device area utilization, can be avoided with optical systems,
for example by using free space propagation in the third
dimeasion for the interconnections.

Pin-outs are oot a constraint in opticsl systems. Opti-
cal systems can accept s large aumber of parallel inputs and
can generate a large number of parallel outputs. These are
usually in the form of 2-D arrays of data or bits, eg. bit




planes of images. The careful partitioning of large systems
is then unnecessary, and limitations on concurrent and pipe-
lived processing due to large /O requirements is relieved.

Of course, digital optical systems will have constraints
of there own. It appears that these will be primarily con-
cerned with the gates. We have seen, for the interconnection
system described in Sec. II, that there is a preference for reg-
ular or repeated interconnections. The gates might also
present some design constraints; this may be in the total
number used or in the average repetition rate at which they
are awitched. [n addition, other limitations may of course
surface as the technology progresses.

Because of these differences in the cost functions of
electronic and optical systems, certain application areas are
specifically well-suited to one or the other. VLSI systems
are being particularly considered for applications which
involve very regular structures and simple data flow that
can be handled with only local communications. Ap exam-
ple is systolic array architectures [15,17], which are well-
suited to many vector-matrix and matrix-matrix operations.
On the other hand, algorithms which inherently require glo-
bal communications cannot be conveuniently haandled by
VLSI, but could, in principle, be implemented with an opti-
cal logic system. Examples of such commuaication-limited
operations include some fast Fourier transform (FFT) algo-
rithms which required global communications due to their
butterfly structure (18|, and some image processing opera-
tions which will be discussed in Sec. IV.

IV. CELLULAR LOGIC PROCESSORS

A cellular logic processor uses a PE, or cell, for each
pixel or set of pixels of an image. A full array processor has
in principle a separate PE for each pixel of an image, so that
the number of PEs is equal to or larger than the size of the
largest image it will process. The number of PEs in a
subarray processor is generally smaller than the image size.
The discussion here applies primarily to full array proces
sors, but the possibility of processing images larger than the
pumber of PEs will also be coasidered.

Possible Optical Implementations

Again we use the optical logic system of Fig. 1. We
assume that one gate array can provide ~ 10° to 107 gates.
We refer to one gate array plus one interconnection unit as
a chip, and note that muitiple chips can be connected. We
should point out that the number of chips that can actually
be used in an overall system will depend on improvements in
switching power of the gates and advancements in other
areas. Also, while in priciple the system of Fig. 1 can be
made small (~1 cm on a side), we will not consider the
effects of physical size in this paper. Now, an interconnec-
tion unit or units may be used to connect between a small
number of chips. Another method of interconnecting, when
the number of chips is moderate, may be to mosaic multiple
gate arrays into a larger 2-D array, and to use larger holo-
grams to interconnect both within each gate array and
between gate arrays.

The hybrid or basis-set interconnection system
described in the previous section could be used to implement
a cellular logic processor. Since all PEs are identical (except
perhaps for a small aumber of additional PEs for other pur-
poses), the number of interconnection patterns is relatively
small. The gate array will most likely be the limiting factor

Fig. 3. Optical interconnection system for cellular iogic
- block mode. Imaging optics are omitted for clarity.
Gate outputs enter from the left, and the right plane is
sent to the gate inputs. Image pixel inputs are shown,
one to each block (PE). Gates numbered 1 are part of
PE 1, gates numbered 2 are part of PE 2, etc.

in the number of gates per chip. If the PEs do not all fit on
one chip, they may be divided so that k x ¥ PEs are put on
each chip; or, each PE may be distributed over more than
one chip so that each processor chip has a portion of every
PE on it. This is possible because of the parallel I/O of each
chip - conceivably each chip could have 10% I/O lines.

A variant of the hybrid interconnection system could
be used. In this case volume (thick) holograms are used,
which could be optical copies of computer-generated holo-
grams. This provides an increase in optical power efficiency
as well as in the achievable hologram complexity. It also
provides the possibility of copying multiple computer-
generated holograms onto one volume hologram, which
might be used to interconnect a mosaic of 2-D gate arrays.
Again there are two possible ways of organizing the loca-
tions of the PEs.

In one case each PE is physically localized. Topologi-
cally neighboring PEs are placed in physical proximity. The
hologram or gate array(s) are conceptually divided into
blocks, one for each PE (Fig. 3). All gates numbered 1 are
part of PE 1, gates numbered 2 are part of PE 2, etc. We
refer to this as block mode. Communication within a PE is
done by interconnections within each block, and between
PEs is done by the same type of interconnections, oaly they
pass into neighboring PEs. In this case, communication
within each PE can be arbitrary, between neighboring PEs
is easy, but between distant PEs may be more difficult (i.e.,
it may increase the hologram complexity). The requirements
on the hologram complexity in order to implement a cellular
logic processor are approximately the same in this case as
with the hybrid interconnection system, but since a more
complex hologram can be made, more gates can effectively
be interconnected.

The other extreme distributes each PE over the gate
array(s). In this interleaved mode, corresponding gates, one
from each PE, are physically grouped together (Fig. 4). The
image is input to one group of gates, which are the input
gates of each PE. Within-PE interconnections are then done
by connecting an entire group of gates to another entire
group of gates. Between-PE interconnections can be done
similarly except with a slight misalignment from one group

)




Fig. 4. Optical interconnection system for cellular logic

. interleaved mode. Imaging optics are omitted for

clarity. Image inputs are shown, one to ad input gate

of each PE. Gates numbered 1 are part of PE 1, etc.
of gates to the other. Again the hologram complexity dic-
tated by this system is approximately the same as in the
hybrid system. . it

Architectures and Characteristics

One problem with full array cellular logic processors
(CLPs) is that there may always be some images to process,
say of size m x m, that are larger than the number of PEs,
say n2 When such an image is processed, if it is processed
in blocks of n x n pixels, one to & PE, then the borders
between blocks can cause problems, especially in iterative
calculations. Incorrect data propagates inward from the
border by an amount propottional to the number of itera-
tions {19]. One way of avoiding this is by loading blocks of
the image with overlapping boundaries into and out of the
array during every iteration. This significantly slows the
process down in the case of most electronic CLPs; while the
caleulations for one iteration may be done in O(1) steps,
loading data into the PEs takes O(n) steps if o PEs are
loaded in parallel. An;nher way of avoiding this boundary

problem is to store 1'? pixels in each PE. This adds to the
n

storage requirements and complexity of the PEs; they must
be capable of handling the largest image that will be pro-
cessed on the machine.

Another problem with electronic full-array CLPs is
caused by pin-out limitations of LS[ and VLSI chips. Ifa
large array is partitioned into chips with k x k£ PEs on each
chip, thes O(k) pins are needed for interconnections between
PEs, if the number of [/O lines to each PE is a constant
independent of n. If it instead grows with n, as in the case
of a hypercube, for example, the number of pins required
grows faster than O(4). Finally, to avoid the bottleneck of
transferring images into and out of the PEs, as described
above, k2 pins would be needed. We should point out that
while these problems appear to be largely inherent in the
technology, it does not necessarily prevent future clever
solutions from reducing their severity. At times they can be
lived with or partially avoided to a substantial degree. A
case in poiot is the MPP {20],

An optical CLP has the potential of bypassing most of
these problems. They all amount to communicatioas limita-
tions. either between chips or between processors and
memoty. An optical fullkarray CLP could have direct con-

nections between each bit ;a2 memory and the PE(s) thas
correspond to that bit. A gate array that could store on the
order of 512 x 512 bits could have 5122 or 262,144 lines
(each with a fanout of 5 for the case of a 4-convected cellu-
ia( array), each to the appropriate PEs. Using multiple
chips may permit these numbers to be even larger.

In the case of electronic sub-array machines, similar
limitations exist. Processing speed is limited primarily by
the data rate of the bus between PEs and memory. In addi-
tion, if pixel operations are done by look-up table, this can
put an added load on the bus or on the r'équired storage
within the PEs. These points are discussed in [19). In the
optics case, data can again be transferred quickl‘y and in
parallel between memory and PEs, so that the data rate of
the transfer is not a significant part of the processing time.

Another possible advantage of optical CLPs is in the
PE to PE interconnection network topology. Each PE can
have a larger number of input and output fines {although
additional gates are needed to in each PE to select among
the lines). In addition, longer interconnections between PEs
are feasible. For example, the hybrid it .rconnection system
of Sec. I cannot distinguish between global and local inter-
connections. In the other interconnection systems of this
section, global between-PE interconnections do increase the
complexity of the hologram or optics somewhat, but may
still be feasible. Such between-PE interconnections can sub-
stantially reduce the communication time between PEs. For
example, in & simple nearest-geighbor mesh-connected array,
it takes O(n) time for data to be transfered between PEs on
opposite sides of the array. Going to a hypercube, which
connects each PE to PEs at distances of 1,2,4,..,2* in each
dimension, lowers this communication time to O(logen ); the
number of lines connected to each PE in this case is also
O(logyn ) [21]).

Reference 22 classifies different types of communica-
tions between PEs and gives the corresponding communica-
tion time on different network topologies. Some classes
depend on the diameter of the graph representation ol the
petwork. Examples include broadcasting, where one PE
sends s message to many PEs, and condensing, where many

PLs send messages to one PE, such that the messages can be
combined en route to the destination. In both cases s glo-
bally connected array such as s hypercube can perform the
communication 10 O(logn) steps, whereas a conventional
mesh requires O(n) steps. Another class of eommunication
operations is one-to-one tasks, or permutations. Here the
topology, but not the diameter, determine the time, but
again the bypercube requires Oflogn ) time, whereas a mesh
may require O(n?) time.

Such between-PE interconnections can substantially
reduce the computation time for some algorithms and pro-
cessing operations used on images in CLPs. Examples of
operations that utilize some of the communication tasks
listed above are the calculation of trapsforms, moments,
value couating or histogramming, aad region property com-
putation. Full array CLPs can do pointwise and local opera-
tions in a small number of steps that is independent of
image size. Since the above operations require time O(logn )
or greater, and loading or unloading of image data into PEs
typically requires time that grows with n in the electronics
case, technologies or architectures that reduce these times
could have a significant impact on processing times for many
image processing algorithms.




CONCLUSIONS

[n conclusion, we have discussed possible optical sys-
tems for the implemeatation of digital cellular logic proces-
sors. Current optical technology in conjunction with antici-
pated progress in research may make the construction of
such a processor feasible. Looking at the underlying physical
characteristics of electronic and optical digital processors
reveals that the two are quite different, and this has an
effect on the algorithms and architectures that can be imple-
mented with each. [n the case of cellular logic processors the
communication and interconnection capabilites of optics
could provide for substantially reduced computation time for
image processing tasks.
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2.3 Binary Image Algebra

Binary image algebra (BIA) forms the mathematical background for software and hardware
systems suitable for optical digital computing. Parallel algorithms for optical cellular logic and
symbolic substitution processors can be formalized as compact BIA expressions. BIA a,ls.(-) leads
to the architectural design of digital optical cellular image processors (DOCIP) which are well-
suited to executing the parallel algorithms. The following three papers summarize our recent
work in these areas.

The DOCIP is a 2-D, page orientefi array of individual processors located at every pixel of
a large image. The attached papers by K.S. Huang, B.K. Jenkins and A.A. Sawchuk, “Binary
Image Algebra and Optical Cellular Logic Processor Design”, from Computer Viston, Graphics,
and Image Processing, Vol. 45, pp. 295-345, 1989; “Image Algebra Representation of Parallel
Optical Binary Arithmetic”, from Applied Optics, Vol. 28, No. 6, pp. 1263-1278, March 15,
1989; “A Cellular Hypercube Architecture for Image Processing”, from Applications of Digital
Image Processing X, Proc. of SPIE-The International Society for Optical Engineering, Vol. 829,

San Diego, California, August, 1987, summarizes these concepts and their algebraic background.
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Techniques for digital optical cellular image processing are presented. A binary image
algebra (BIA), built from five elementary images and theee fundamental operations, serves as
its software and leads to a formal parallel language approach to the design of paralle] binary
image processing algorithms. Its applications and relationships with other computing theories
demonstrate that BIA is a powerful systematic tool for formalizing and analyzing parallel
algorithms. Digital optical cellular image processors (DOCIPs), based on cellular automata
and cellular logic architectures, serve as its hardware and implement parallel binary image
processing tasks efficiently. An algebraic structure provides a link between the algorithms of
BIA and architectures of DOCIP. Optical computing suggests an efficient and high-speed
implementation of the DOCIP architectures because of its inherent parallelism and 3D global
free interconnection capabilities. Finally, the instruction set and the programming of the
DOC!Ps are illustrated. € 1989 Academic Press, Inc

1. INTRODUCTION

In this paper we combine studies of architectures, algorithms, mathematical
structures, and optics to show that: (1) an image algebra extending from mathemati-
cal morphology [2]-[5] can lead to a formal parallel language approach to the design
of image processing algorithms; (2) cellular automata are appropriate models for
parallel image processing machines [6, 7]; (3) an algebraic structure serves as a
framework for both algorithms and architectures of parallel image processing; and
(4) the parallel processing and global interconnection advantages of optical comput-
ing may be useful in efficiently implementing image algebra with cellular logic
architectures.

The purpose of the image algebra approach in this paper is for the development
of a programining language for a specific parallel architecture, namely a digital
optical cellular image processor (DOCIP). The binary image algebra (BIA) de-
scribed here is based on a set of three specific fundamental operations. These
fundamental operations are the key operations in the instruction set of the DOCIP
machine. The BIA provides a decomposition of general operations, including
low-level image processing operations, into the three fundamental operations of the
instruction set. This decomposition is inherently parallel and provides a direct
mapping to the machine architecture.
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In this section, we first review previous work on image algebra, celtular automata,
and cellular logic architectures, then we define the algebraic structure and outline
the detailed discussion that follows.

Previous Work on Image Algebra

During the past few years, numerous papers have used an algebraic approach w0
aid in image processing [2-5, 8-10). Among them, morphological image algebra has
the closest relation to binary image algebra (BIA). Many papers describe either
specific theoretical aspects of mathematical morphology or application-specific
morphological algorithms [11-18]. The applications of mathematical morphology
have been fruitful. In this paper we adapt it to provide the following features:

1. A simplified mathematical structure. Mathematical morphology comprises
two branches, integral geometry and geometrical probability, plus a few collateral
ancestors (harmonic analysis, stochastic processes, algebraic topology) [2}. The
mathematical details and formal proofs in morphology are often intricate and
involve advanced set theoretic and topological concepts which are not always
necessary for engineering applications.

2. A complete algebraic theory. Mathematical morphology defines some alge-
braic operators and utilizes some algebra. With our adaptation, we would like to
answer the following questions:

e What is the algebraic definition of this mathematical morphology?
¢ How powerful is this mathematical morphology?

e  What is the definition of a transformation? Morphological transformations
are constrained by four principles [2]; here we introduce a complete definition of
image transformations.

3. Clarification of its relationship to other areas. We define its relationship to
linear system theory, image processing, and common computing techniques includ-
ing boolean logic, cellular logic, and algebraic structures.

Here we develop a simple unified complete parallel binary image processing
theory based on an algebraic structure—binary image algebra (BIA). In BIA,
parallel binary image processing algorithms (including parallel numerical computa-
tions) can be written as compact algebraic expressions where an algebraic symbol
represents an image (not a pixel) or an image operation (not a pixel-wise operation).
A complete algebraic system comprises three fundamental operations and five
elementary images which can be combined to generate any image in the three
fundamental operations for forming any image transformation. (In fact, one can
define four elementary images and two fundamental operations that are sufficient:
however, in this paper we will not consider them since they are more difficult to
use.)

There are other image algebras, each with its own characteristics [8. 9]. Becausc of
our intended application to a highly parallel computing machine with simple
processing elements and a reduced instruction set, we utilize a BIA with only three
fundamental operations that can implement any binary image transformation. For
example, the counting function, which gives the number of pixels having a certain
level, is considered a mapping from a picture type of operand to a number type of
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FIG. 1. A sequential process of cellular logic operations (CLO). The value X'(1, ;) is determined by
the corresponding X{1. ;) in the original image along with the values of its neighbors

operand in references {8] and [9]; in BIA numbers are also represented as images
(19]. BIA suggests several simple but fast parallel image algorithms and a parallel
image processing architecture with a very low cell complexity.

Previous Work on Cellular Logic Architectures

To match BIA parallel algorithms by cellular logic architectures in a transparent
way, we characterize a cellular automaton by algebraic structure as BIA does. The
cellular logic computer was first inspired by the writings of von Neumann [20, 21}
on cellular automata. A sequential process of cellular logic operations is described
in Fig. 1. Some review of cellular image processors can be found in Refs. [21-25].
Many cellular computers have been constructed previously for implementing cellu-
lar logic operations, and some ideas for extending the nearest-neighbor connected
cellular logic computers for improving speed and flexibility have been proposed [24].
These architectures include: (1) the cellular string (Fig. 2(a)); (2) the cellular array
(Fig. 2(b)); and (3) the cellular hypercube (Fig. 2(c)); and the cellular pyramid (Fig.
2(d)). These three architectures share a common feature in the simplicity and
regularity of interconnecting simple processing elements and represent an intercon-
nection topology in 1D, 2D, and 3D, respectively. The 3D case is diffticult to
implement on a planar VLSI chip [24, 26, 27}, but may be realizable by a digital
optical system [28, 29]. Two promising architectures based on digital optical cellular
image processors (DOCIPs), DOCIP-array and DOCIP-hypercube, are presented
below as a means of implementing BIA effectively.

Definition of Algebraic Structure

An algebraic structure (or algebra) {30-32] is a pair (or system) A = (S, F),
where

® S s a set, and




'

HUANG, JENKINS, AND SAWCHUK

e Fis a family of operations which are functions,
f: Sk 5,
and £ is a finite nonnegative integer.

Remark. For any finite nonnegative integer k, we define a k-ary operation on S
as an operation which is a function f: §* — S. Thus, a unary (or 1-ary) operation
on S is simply a function on S to S. A binary (or 2-ary) operation on S is a
function on S? to S. For completeness, we define a nullary (or 0-ary) operation on
S to be a particular element of §.

—_ C i in the 4 cellular array
=) ¢ i in the 8 cellutar array

Fi1G. 2. (a) A cellular string. It requires only a 1D interconnection geometry. Each cell only connects
with its two nearest cells. (b) A cellular array. It requires a 2D interconnection geometry Each cell
connects with its 4- or R-nearest cells. (c) A 1-dinensional cellular hvpercube [24]. Each cell connects
with cells at distances 1,2,4,8,....2* from it. Here, only the connections with distances 1. 2, and 4 are
shown. (d) A 2-dimensional cellular pyramid. It consists of stages of arrays with connections between two
adyacent stages and is most efficiently implemented with a 3D interconnection geometry
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Therefore, the problem to be solved is esseatially to find an “appropriate”
algebraic siructure (S, F) for parallel binary image processing, i.e., to search for §
and F, and its “efficient’” hardware implementation.

OQutline

Section 2 contains the framework of BIA: Subsection 2.1 gives the basic defini-
tions; Subsection 2.2 presents two fundamental principles which prove the com-
pleteness of BIA.

Section 3 describes some applications of BIA: Subsection 3.1 reviews basic
properties of images and image transformations and derives from them some
standard image operations; Subsection 3.2 gives some examples of special cases;
Subsection 3.3 gives some useful theorems and examples for low level vision
operations, including morphological filtering, shape recognition, “salt” and “ pepper”
noise removal, size, and location verification.

Section 4 discusses the relationship of BIA and other computing theories:
Subsection 4.1 describes the relationship with boolean logic; Subsection 4.2 de-
scribes the relationship with symbolic substitution and cellular logic; Subsection 4.3
describes the relationship with linear shift invariant system theory, convolution, and
correlation; subsection 4.4 describes some standard algebraic structures supported
by BIA.

Section S presents the implementation of BIA on digital optical cellular image
processors (DOCIPs): Subsection 5.1 gives the algebraic description of the DOCIPs
which have the same algebraic structure as BIA; Subsection 5.2 gives the general
description of the DOCIPs.

Finally, the programming of the DOCIPs is illustrated in Section 6.

2. BINARY IMAGE ALGEBRA (BIA) FUNDAMENTALS
The overall philosophy of BIA is:

® An image, but not a pixel, is an object. For parallel languages and machines
for image processing, images can be considered as primitive variables for simplifying
the design.

®  Complex image processing operations can be reduced to simple instructions.
Although image processing operations appear complex, theé fundamental interac-
tions and the elementary components in a system are very simple.

Thus, BIA begins by:
1. Defining the universal image as the working space for images and their
image transformations.
2. Defining elementary images which can be combined to generate any image.
3. Defining fundamental operations which can be cascaded to form complex
operations.

4. Defining an image processing/analysis algorithm design as the choice of
“good” (or “appropriate”) reference images and transformations.

A reference image can be any image and is a generalization of structuring eiements
in mathematical morphology [2]. Reference images contain some predefined image
property (or information); image transformations (or operations) are used for
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measuring the image property from an input image. Image description, image
information extraction, or image property measurement is done by using reference
images to model or transform the original image to a final state which reveals the
desired information or is used to detect the desired properties easily.

Here we give the algebraic structure of BIA first, and then we provide definitions
and present two fundamental principles which allow us to generate any reference
image and to implement any image transformation. Ideally, BIA may be further
generalized to GIA (general image algebra) which deals with grey-level and com-
plex-valued images.

2.1. Definitions

DEeFINITION OF BINARY IMAGE ALGEBRA (BIA). Binary image algebra is
an algebra with an image space S, which is the power set of a predefined uni-
versal image P(W), and a family F of operations including three fundamental
operations (&, U, 7), which are non (O-ary operations, and five elementary images
(1. A, A7, B, B™!), which are 0-ary operations. Symbolically,

BIA=(P(W);®,U, 1.4, 4 ' B.B")

ie.S=PW)and F=(®,U, .1, A, A", B, B''). The image space S and the
family F of operations will be derived in the following.

Basic Definitions

In general, a binary digital image is defined as a function f that maps each
spatially sampled grid point (x, y) of the picture on an orthogonal coordinate
system onto the set composed of two elements: 1 (i.e., white, foreground point or
image point) and 0 (i.e., black or background point). However, it will be more
convenient for our algebra, if we use a set of the coordinates of image points (1’s) to
specify an image. In this paper, an image is treated as the set of coordinates of
image points (i.., foreground points or pixels that have value 1). We begin the
description of BIA by defining our artificial universe:

DEFINITION 2.1 (universal image). The universal image is the set W = {(x. )|
x€Z,y€Z,), where Z,={0,+1,%+2,...,+n} and n is a positive integer
(Fig. 3).

"

Remark. * € ™ means “belongs to.” Notice that given n, the universal image
defines the domain of our images. In fact, for an image with size larger than
(2n + 1) X (2n + 1) (the size of the universal image), we need- to increase the size of
the universal image or decompose the tested image into subimages whose sizes are
smaller than the size of the universal image. For the reason of simple practice. we
only consider the square tessellation of images. To deal with nonsquare (e.g.
hexagonal) tessellations, we can simply replace the universal image to be the set of
grid points corresponding to the new tessellation pattern.

DEFINITION 2.2 (image space). The image space is the power set (the set of all
subsets) of the universal image, i.e., S = P(WV).

DEFINITION 2.3 (image). A set X is an image if and only if X is an element of
the image space S, i.e. X is a subimage (subset) of the universal image W.
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FiG. 3. The universal image W. It has 2n + 1) X (2n + 1) image points and # is a positive integer

Symbolically,

Xisanimage & X € S & X C W.

Remark. *C " means “is included in.” There exist 207 D>Cn* D different
images. Three terms related to images are defined:

1. Size (or area) of an image X, denoted as #( X). is the cardinality (i.c.. the
number of elements) of the image X.

2. Foreground of an image X, simply denoted as X, is referred to those pixels
with value 1.

3. Background of an image X, denoted as the complement X (Definition 2.6),
is referred to those pixels with value 0.

Once we know the foreground of an image, the background of this image is well
defined (since the universal image is given first). Thus, the foreground is sufiicient to
specify an image.

DEFINITION 2.4 (image point ( foreground point)). A point (x. y) is an image
point of an image X if and only if (x, y) is an element of the set X,

Remark. The largest image is the universal image W and consists of 2n + 1) x
(2n + 1) image points, i.e, #(W) = (2n + 1) X (2n + 1); the smallest image is the
null image ¢ (defined as the complement ¢ = W) and has no image points, i.e..
x(P) = 0.

DEFINITION 2.5 (image transformation). A transformation T is an image trans-
formation if and only if T is a function mapping from the image space S 1o the

image space S.

g . MR I TN . .
Remark. ‘There exist (227 +D=@ne iy @EREE Gp0e transformations.
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0000000 000
0011110 0000000
ooo0t110 0011100
0000110 0011100
0000010 00114
0000000 0000088
0000000 0000000
Input x Reference 5

§
5
$

1111111 0000000 0111111
1100001 0011110 ot11-1111
1110001 0011110 o1t11111
1111001 0111190 00t1111
1111101 0011110 0001111
1111111 0000000 Q000111
1111111 0000000 000000
Compiement Y Union XuR Dilation X®R

F1G. 4. An example of fundamental operations: complement ~, union U, and dilation &.

DEFINITION 2.6 (three fundamental operations). There are three fundamental
operations (Fig. 4):

1. Complement of an image X:
X={(x.p){x,y) e WA(x,»)& X}.
2. Union of two images X and R:
XUR={(x,p)l(x,y) € XV (x,y) € R}.
3. Dilation of two images X and R:

{(xy + x5,y + ) € W)(x;, 1) € X, (x5, ;) € R},
X®R-= (X+ 2)A(R= 2).

%) otherwise.

’

Remark. “A” means “and,” and “V” means “or.” Note that X usually
represents an input or data image and R is a reference image. The consideration of
null image in the dilation operation is missing in mathematical morphology (where
the dilation is defined as the union of all translations of X by all image points in
R); with this generalization we have a complete theory which is not found in other
image algebras because there is less demonstration of their capabilities for imple-
menting any image transformation. We can also define other image operations as
fundamental operations instead of these three operations. The reason for choosing
these three operations is because of their simplicity, and resulting simple software
design and hardware implementation. As shown later, these three operations may be
implemented by a 2D optical gate array with 3D interconnections.

DEFINITION 2.7 (elementary images). These elementary images are constant
images, i.e., 0-ary operations. Each elementary image has only one image point.
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There are five elementary images:

1. 1 = {(0,0)} —consisting of an image point at the origin

2. A = {1,0)}—consisting of an image point right of the origin

3. A°' = {(—1,0)}—consisting of an image point left of the origin
. B
B! = ((0. — 1)} ~consisting of an image point below the origin.

(0, 1)} —consisting of an image point above the origin

©wos

Remark. 1In fact, these five elementary images could be reduced to four elemen-
tary images, because / =A°=4 0 A4 '=B°=Be B .

DEFINITION 2.8 (reflected reference image). Given a reference image R which is
a predefined image for containing some desired image property or image informa-
tion, its reflected image is defined as

R={(-x.-»)(x.¥) € R}.
Remark. - In many useful cases the reference image R is symmetric, then R = R.

2.2. Two Fundamental Principles

Two fundamental principles basically define the binary image algebra (BIA).
Before stating these two principles, we give some preliminary results.

LEMMA 2.1.

1 ifX=R

XeR)U(X®R)UI =
( Yol ) {Q otherwise

V X, R€ P(W). where I = {(0,0)} is an elementary image, R is the reflected
reference image of R. and “N” means * for all.”

Proof. Appendix A.

Remark. This lemma says that if the image X matches the image R, then the
origin (central pixel) of the above output image has value “1.” otherwise it is always
“0."

THEOREM 2.1.  Any image transformation T: P(W) — P(W') can be expressed as
A

r(x)=U{(Xxer)ju(xeR)ul e,

=1

where k < #(P(W)), R, and Q, are the reference images used to form anv desired
image transformation, and

k
UR,=R,UR,U--- UR,.

1=1
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Proof. Appendix B.

THEOREM 2.2.  Any imaze can be represented as

x= U a8,
(. HekXx
where A'B’ = A' ® B/,
A=A@AD® - &4 = ((i,0)) ifi> 0.
{
A=A4A"'94'e - 047! ={(i,0)} ifi <0.

and A. B, A}, B! are the elementary images defined in Definition 2.7.
Proof. Appendix C.

PRINCIPLE 1 (fundamental principle of image transformations). Any image
transformation T can be implemented by using appropriate reference images R and the
three fundamental operations: (1) complement X of an image X, (2) union U of two
images, (3) dilation & of two images.

Proof. Tt follows from Theorem 2.1.

In order to use Principle 1 efficiently in practice, we invoke Principle 2 for the
generation of reference images.

PrINCIPLE 2 (fundamental principle of reference images). Any reference image R
can be generated from elementary images (I, A, A™', B, B™') by using the three
fundamental operations.

Proof. 1Tt follows from Theorem 2.2

Therefore, by the above principles, we can represent BIA as:
BIA=(P(W);®, U, I, 4,47, B,B™").

3. DEVELOPMENT OF BINARY IMAGE ALGEBRA (BIA)

BIA can have many applications in character recognition, industrial inspection.
medical image processing, and scientific computation. In this section we first review
the basic properties of images and image transformations, define 11 standard
operations, and give some special cases of dilation {2-5, 33-36). Then we summarize
four theorems and some examples for binary image processing.

This section is primarily a survey of binary image processing algorithms with
implementation using BIA fundamental operations. These fundamental operations
are so chosen because they form an efficient basis for the instruction set of an
optically based cellular image processor. This survey serves as a description of a
parallel language for controlling the processor and how it is compiled into low level
instructions. The use of BIA for parallel numerical computation is described in [19].
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E the pixe al coordinate {x.y) E the pixel al coordmate (xy)
(1
(a) the 4-neighborhood of (x.y) {b) the 8-neighborhood of (xy)

FiG. 5. The 4-ncighborhooad and 8-neighborhood of an image point (., v).

3.1. Basic Properties of Images and Image Transformations

DeriNITION 3.1 (connectivity in images). 1. 4-neighbor and 8-neighbor
image point (x, ') in an image X can have two types of neighbors:

: An

(a) An image point (i, f) ts a 4-neighbor of (x, y) & (i, j) € {(x £ 1, v).

(x.y D}

Remark. {(x.y), (x £ 1, y), (x, ¥y £ 1)} is called the 4-neighborhood
of (x.yyand N, = {(0,0). (0, +1).(+1,0)} =fuAdud'uBuUB '

(Fig 5(a)). -

(b) An image point (i, j) is a 8-néighb0r of (x, mye (i, jYe {(x + 1, v),

(q, v+ 1) (x+ 1, y+ 1))

Remark. {(x,y),(xt 1 y){(x,yx 1) (x+ 1 yt1)) is called the

8-neighborhood of (x, y) and N, = {(0.0), (0. £1). (£1.0), (£ 1.
(Fig. 5(b)).
2. 4-connected and 8-connected:

1))

(a) Two image points (x, ¥) and (i, j) of an image X are 4-connected «

there exists a sequence of image points (x, y) = {xg. ¥y). (X1, )

-----

(X, Ym) = (i. j), where (x,, y,) is a 4-neighbor of (x, .y, ;) and

(Xk,yk)GX.lskSm.

(b) Two image points (x, y) and (i, j) of an image X are 8-connected «

there exists a sequence of image points (x, y) = (xq. o). (X, )

.....

(x,. V) = (i, j), where (x,, y,) is an 8-neighbor of (x, .3, ;) and

(.. WIEX, 1<k <m.

Remark 1. “4-connected in X" and “8-connected in X" arc equiva
relations (reflexive, symmetric, and transitive).

Remark 2. For any image point (x, y) in a nonnull image X, the set of

lence

()

such that (x, y) and (i, ;) are 4-connected (or 8-connected) is called a 4-connected

(or 8-connected) component of X. A 4-connected (or 8-connected) component

of X

is just an equivalence class in X under the equivalence relation —*“4-connected (or
8-connected) in X.” Thus, a collection of 4-connected (or 8-connected) components
of X forms a partition of X, i.e., the set of all 4-connected (or 8-connected)

components { X, }, ., (where I is the index set of connected components) is a f
of nonnull subimages of X and has the following properties:
(a) X, + @ forall i€ I
by X, N X =@ foralli#j i,jel (X,NX =XULX, as defined in
nition 3.3)
(¢c) X=U, ., X.

amily

Defi-
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Image X (a) A 4-conmected component of X {b) An 8-connected component of X

F1G. 6. The 4-connected component and 8-connected companent of an image.

Figure 6(a) shows a 4-connected component in an image X and Fig. 6(b) shows an
8-connected component in X.

Remark 3. If an image X has / 4-connected (or 3 connected) components, there
are / distinct equivalence classes in X. Each equivalence class X, can be represcnted
by an image point in X,. Thus, we may use / distinct image points which belong to /
different 4-connected (or 8-connected) components to represent the classes of the
image X,

Remark 4. In dealing with connectedness in both X and X, to avoid the
“connectivity paradox” {33}, it is preferable to use opposite types of connectedness
for X and X, i.e.. if we use “4-connected” for X, then we use “§-connected™ for X
and vice versa.

Remark S. If any image X is surrounded by a border of 0's, the component of X
consisting of the points connected to (any one of) these 0’s is called the outside of X
(Fig. 7(2)). If X has any other components, they are called holes in X (Fig. 7(b)).

For more detailed discussion of geometric properties of images, the reader 1s
referred to [33-35]. For equivalence relations, equivalence classes, and partitions.
please refer to (30-32].

DEFINITION 3.2 (basic properties of image transformations). The key properties
of image transformations are the following ten basic properties:

1. Increasing. An image transformation T( X) is increasing
e (XcY->T(X)cT(Y)) foralt X.Y € P(W).
2. Decreasing. An image transformation T( X)) is decreasing

o (XCY-T(Y)cT(X)) forall X.Y e P(W).

|
| ih

Image X

(b) The holes of X

Fic. 7. The outside and holes of an image
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3. Extensive. An image transformation T( X)) is extensive
e XacT(X) forall X € P(W).
4. Antiextensive. An image transformation T(X') is antiextensive

o T(X)cXx foral X e P(W).

N

. Idempotent. An image transformation 7( X) is idempotent

o T(T(X)) =T(X) forall X € P(W).
6. Shift invariant. An image transformation 7( X) is shift invariant
eT(XeP)=T(X)e® Plorall X,Pe P(W)

and P is a point image which consists of one and only one image point.
If an image transformation is not shift invariant, then it is shift vanant:

T(X®P)+T(X)s P (in general).

7. Homotopic. An image transformation T( X ) is homotopic
«» there exists a one-to-one and onto correspondence between the connected
components of X and those of T(X), for all X € P(W). The same is then true for
the holes.

8. Commutative. A binary image operation - iS commutative
o X-R=R-X forall X, R € P(W).
9. Associative. A binary image operation - is associative

«(X-R)-0=X-(R-Q) forall X,R. Q€ P(W).

10. Distributive. A binary image operation - is distributive over a binary image
operation +

X - (R+Q)=(X-R)y+(X-Q) forall X.R. Qe P(W).

DEFINITION 3.3 (standard operations).  Most standard operations can be derived
from the three fundamental operations; eleven common ones follow:

1. Difference of X by R (Fig. 8(a)):

|

X/R={(x.v)EX|(x,y)¢R} =XNR=XUR.

et

Remark. X = W/X. where W is the universal image. The difference is an
obvious approach to detect defects in the foreground of a tested image.
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- Ditferenc
’ % ) o

a \ R \/R
n % = ..
- intersection
b x " xR
& ° @
v @ - Erosion
c X )4 X R
Symmetric
& - Difference
d X R XAR
° O
. @ - Opening
L] X 4 XokR
@ ° o °
. @ - CLOSING
¢ A R XeR

FiG. 8 FEleven standard denived image operations: (a) difference; (b) intersection; (c) erosion:
(d) symmetric difference; (e) opening; (f) closing; (g) hit or miss transform (template matching).
(h) thinning: (i) thickening; (j) a sequential thinning (used for homotopic skeletonization) {36]: (k) a
conditional dilation.

2. Intersection of two images X and R (Fig. 8(b)):

XNR={(x.y(x.y) €EXA(x.y) ER} =XUR.

Remark. XU R=XNR.I{ XN\ R+ @, then we say that an image x hits (or
is joint with) an image R. If X N R = @, then we say that an Image X misses (or is
disjoint with) an image R.
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FIGURE 8-Continued

3. Erosion of an image X by a reference image R or foreground template
matching of X by R (Fig. 8(c)):

XoR=XoR.

Remark. X® R=Xo R ,and R = R when R is symmetric. The erosion of an
image X by a reference image R can be thought of as the complement of the
dilation of the background by the reflection of the reference image R. In general, the
erosion of a nonnull image X by a nonnull reference image R can be used to
decrease the size of regions, increase the size of holes, eliminate regions, and break
bridges in X; on the contrary, the dilation of a nonnull image X by a nonnull
reference image R can increase the size of regions, decrease or fill in holes and
cavities, and bridge gaps in X. Furthermore, the erosion can be interpreted as a
foreground template matching where the foreground points of X © R indicates the
occurrences of the foreground template R in X (in this purpose, the size of R
usually is much smaller than the size of X).

4. Symmetric difference of two images (mod 2 image addition or subtraction)
(Fig. 8(d)):
X-R=(X/R)U(R/X)=XURURUX.

Remark. The symmetric difference is a commutative operation, and its inverse
operation can be defined as itself. In Section 4 we show that this operation is the
parallel form of boolean EXCLUSIVE-OR. It is an obvious approach to detect
defects (including the foreground or background defects) of a tested image.

5. Opening of an image X by a reference image R (Fig. 8(e)):
X R=(XeR)®R=X®R @&R.

Remark. The opening operation is an erosion followed by a dilaton with the
same reference image R. In general, the opening X o R with a nonnull reference
image R reduces the size of regions and eliminates some image points by removing




BINARY IMAGE ALGLEBRA
all features in X which cannot contain the reference image R.

6. Closing of an image X by a reference image R (Fig. 8(f)):
X-R=(X®@R)eR=(X®R)®R.

Remark. The closing operation is a dilation followed by an erosion with the
same reference image R. In general, the closing X - R with a nonnull reference
image R increases the size of regions and eliminates some background points by
filling in all background areas that cannot contain the reference image R, such as
holes and concavities in the image X.

7. Hit or miss transform ® of an image X by an image pair R = (R,. R,) or
template matching of X by R (Fig. 8(g)):

v

X®R=(XoR)N(XeR,)=(XoR)uU(Xe®R,).

Remark. - The hit or miss transform of an image X by a reference image pair
R = (R,. R,) is used to match the shape (or template) defined by the reference
image pair R, where R, defines the foreground of the shape and R, defines the
background of the shape. The key conditions are that the foreground X must match

R, (ie. X © R,), while simultaneously the background X matches R, (ie,
X © R,). In order to better define the hit or miss transform and its relationship with
conventional boolean logic operations, we start from a pixel-wise boolean compari-
son to derive the hit or miss transform in shape recognition (Theorem 3.2). Note the

similarity of the symmetric difference and the hit or miss transform.

8. Thinning ® an image X by an image pair R = (R, R,) (Fig. 8(h)):

XOR=X/(X®R)=XU(X®R)U(X®R,).

Remark. The thinning operation is antiextensive and decreases the size by
removing the central points of the regions which match the reference image pair
R = (R, R,).

9. Thickening © an image X by an image pair R = (R, R,) (Fig. 8(1)):

XOR=XU(X®R)=XU(X®R)U(Xe®R,).

Remark. The thickening operation is extensive and increases the size by filling
the image points where the regions match the reference image pair R = (R, R,).

10. Sequential operations (e.g., sequential dilation, sequential erosion, sequen-
tial thinning): If an image operation - is successively performed with each reference
image (or image pairs) in a sequence (Rg) = (R,, R,,.... R,), then we define a
sequential image operation

X-(Rg)=(---((X-R,)-R)----R,).
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Two examples are:

(a) Sequential thinning of an image X by a sequence of image pairs
(R0)E(Rav R/, ----- R_,)I

Remark. The sequential thinning is powerful in many applications, such as
constructing a digital homotopic skeleton of an image X. Skeletonization of an
image is an operation that transforms the image to a simplified image, called a
skeleton, which emphasizes its connectivity. However, a homotopic skeleton cannot
be obtained by digitizing an analog skeletonization algorithm; instead, a sequential
thinning with a sequence of reference image pairs should be used. Several different
algorithms employing different reference image pairs (called masks) have been
proposed by several authors [6, 36]. Figure 8(j) shows an example of the skeletoniza-
tion by a sequential thinning with a sequence of eight reference image pairs
proposed by Levialdi er al. (36].

" (b) Sequential dilation of an image X and a sequence of reference images
(Rg) = (R, R,.....R.):

Xo(Rg)=(---((X®R,)®R,) - ®R,).

Remark. Since the dilation is commutative and associative, in practice the
dilation X & R with a large reference image R is usually implemented as a
sequential dilation with a sequence of small reference images. For example, if
R=E ®E,®- - ®F, then

XoR=(---((X®E)®E)e® - 0F,):
and if E=E, = E,= ... = E,, then

R=E‘*sF®Fe- - -0F.
LreEv TR
k
11. Conditional operations (e.g., conditional dilation, conditional erosion, con-
ditional thinning): An image operation - between an image X and a reference image

(or image pairs) R performed within a limiting set Y is called a conditional
operation and is denoted

X-RIY=(X-R)nY=X-RUY.
Remark. Figure 8(k) gives an example of the conditional dilation.

3.2. Examples of Special Cases: Translation (Shifting), Expansion,
Shrinking, and Projection
Translation (shifting), expansion, shrinking, and projection in a direcion can be
achieved by the dilation (or erosion) in a direct way.
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1. Shifting an image X from coordinate (x. y) to coordinate (x + i, v +J) s
done by

Xo ((i.j)) =Xe {(-i.—j)}.

Remark. A point image {(i, j)} corresponds to a discrete delta function at
8(x — i, ¥ — ). Thus, an image function X(x, y) (which corresponds to the image
X) convolved with the delta function 8(x — i, y — J) or correlated with §(x + i,
v +j)is the same as X @ {(i, j)} = X © {(~1. =N}

2. Adding a new 8-connected or 4-connected boundary to an image X (ie,
expansion) is done by

XoN, or X & N,
where N,=/uAUA '"UBUB 'and Ny=U; . | A'B’.
3. Removing the 8-connected or 4-connected boundary of an image X (ie.
shrinking) is done by

XeN=X®N, or X6 N =XoN,,

where N, =JuAUA "UBUB "and Ny =U] . | AB.

4. Projecting an image X to distance k in a direction 6, ie.. producing a
shadow of X. where the furthest image point in the shadow in the direction 8 is at
distance k from the furthest image point in X in the direction 8: this can be
achieved by

X ® 06!,
where © can be any one of the following:
e East: E=1UA, E'=U'_ &'
e South: S-JUuB . Sk-UL B
o Westt W=Jud " Wh=Ul 4"
e North: N=7UB. N =U* B
e Southeast: S, =/ UAB ' Sp =U!_,AB "'
e Southwest: S, =IUA 'B ' Sk =Ul 4 'B"'
e Northwest: N, = TUA B, Ny, =U' 4 'B'
e Northeast: N, = [ U AB. N} = Ul A'B'
e Horizontal: H =U'_ | A H* = UL &
e Vertical: V' =U'_ B V' =UL [ B
o lLeft-diagonal: L, =U'_ A4 "B L) =Ul , A B
e Right-diagonal: R, =U'_ | A'B. R}, =U!. , A'B".

3.3, Theorems for Low Level Vision

Here we summarize four theorems and some examples for binary image process-
ing applications. Theorem 3.1 gives basic properties of the BIA fundamental
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TABLE 1(a)

Basic Properties of Three Fundamental Operations and of Three Derived Operations
(Alternative Fundamental Operations)

Qperationy Complement Union Diaton Ditference Intersection Erosion
Properties Ay XUk X 4 K X/R XOoR XGR
tncreasing No Yes Yes Yes Yes Yes
Decreasing Yes No No No No No
X ) v Yes N
Extensive No es GfRT) o No No
Yes
Antiextensive No No No Yes Yes (RO
Idempotent No Yes No Yes Yes No
Shtt invanant No No Yes No No Yes
Homotopic No No No No No No
Commutative Yes Y
No es No Yes No
Associative No Yes Yes No Yes No
Distributive
No Yes Yes No Yes No
(wdh some oper (with n) (with U) (with U, &)
TABLE 1(b)
Basic Properties of Some Standard Derived Operations
ration sl)ymer nc Opening Closing Thinning Thickening 5':2‘:“%"“"”&“
Properties Xok Xo kR XeR XOR XOR X @(Re)
Increasing No Yes Yes Yes Yes No
Decreasng No No No No No No
Extenswe No No Yes No Yes No
Antiextensive No Yes No Yes No Yes
Idempotent No Yes Yes No No Yes
Shitt invarniant No Yes Yes Yes Yes Yes
Homolopic No No No No No Yes
Comrmutative Yes No No No No No
Associative Yes No No No No No
Distnbutive
twith some oper No No No No No No
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operations and standard operations. We then describe the implementation of
morphological filters, shape recognition algorithms, “salt” and *pepper” noise
removal, and size and location verifications. Those more obvious proofs are omitted
for brevity.

THEOREM 3.1 (properties of image operations). The BIA fundamenial operations
and standard operations have the properties shown in Table 1(a) and Table 1(b).

Proof. Appendix D gives some of their mathematical expressions which follow
from the definitions.

Examples of morphological filters. Many image transformations are interpreted
as morphological filtering (2] or cellular filtering [6]. Some major morphological
filters are listed in the following:

1. One kind of morphological low pass filter (Fig. Y(a)): to remove high
frequencies in the foreground of an image X can be achieved by opening, ic.,

XeR=(X6R)®R=X®&R ®R.

2. A second kind of morphological low pass filter (Fig. 9(b)): to remove high
frequencics in the background of an image X can be achieved by closing, i.c.

X-R=(X®R)6R=(X®R)®R.
3 A morphological high pass filter (as shown in Fig. 9(c)) which removes low
trequencies in the foreground of an image X can be achieved by the difference of
X and 1ts opening, i.c..

X/(X-R)=X/((XoR)®R)=X/(X®RoR)=XU(X®R ®R)

4. A morphological band pass filter (as shown in Fig. 9(d)} which removes low
frequencies and high frequencies in the foreground of an image X can be achieved
b the difference of its opening with a smaller reference image R and its opening
with i larger reference image Q, where RC Q, i.e,,

(X°R)/(X-Q)=((XeR)®R)/(XO Q)@ Q)

THEOREM 3.2 (shape recognition (template matching)). 1. The locations of a
shape. that is defined by a nonnull reference image R and a nonnull reference image
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F1G. 9. (a) One kind of morphological low pass filter (opening): (b) a second kind of morphological
low pas filter (closing); (c) a morphological high pass filter; (d) a morphological band pass filter.

(called mask) M (Fig. 10(a)), with R C M C W (W is the universal image), can be
detected by

[}

(XeR)n(Xo (M/R))=(X®R)U (X& (M/R))

I
I
®
¢
C
X

(xemuR).

Equivalently, setting R, = R, R, = M/R. and redefining a nonnull reference image
pair R = (R,, R,) (Fig. 10(b)) vields the hit or miss transform of X by R:

v

X®@R=(XoR)N(X6R,)=(X®R)U(X®R,)

2. The locations of a shape, that is defined by a family of nonnull reference image
pairs { R(8)} with 8 € Q (O is the index set of the family of nonnull reference image
pairs and R(8) = (R (8), R,(0)). can be detected by the union of the hit or miss




BINARY IMAGE ALGEBRA

. =

o 7N

\ [ s

IR TN TAv T

V@OR =

FiG. 10. (a) One kind of shape recognition. R represents the shape to be identified and must lie
entirely and exclusively in the mask defined by M. (b) Hit or miss transform which recognizes locations
of foreground points given by R, in conjunction with background points given by R,.

transform of X by R(0):

Uxer(e)= U (XxeR(8))n(XeR,(8))
O e
= U (X R (8))u(XoR,(0)).
e

Proof. Appendix E.

THEOREM 3.3 (“salt” and “pepper” noise removal). 1. “Salt™ noise removal
(solated image point removal ) ( Fig. 11(a)): to remove an image point if its 4-connected
or 8-connected neighbors are background points (0's) can be a

i

X0Q,=XuUXe M,

XO Q=

!
>
~
—
>
2

S

where Qg = (Mg, 1). Qy = (Mg, I). M{=AUA "UBUB "= N,/I and My =
NI
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FiG. 11. (a) “Salt” noise removal. (b) “Pepper” noisc removal. (¢) “Salt” and “pepper” noise
removal

2. “Pepper™ noise removal (interior fill) ( Fig. 11(b)): to create an image point at
a coordinate if its 4-connected or 8-connected neighbors are image points (1's) can be
achieved by

or

XOR, =XUX6& M,

where R, = (I, M), R, = (1. M,).
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3. “Salt and pepper” noise removal ( Fig. 11(c)): to remove noise points, that are
completely surrounded with 4-connected neighbors or 8-connected neighbors of th:
opposite value, can be achieved by

(X0 Q)/(X®R)=(XuXeM)u(XU(xeM,))

or

(XOQ)(X®R) =(XUX®M)u(XU(XeM).

Proof. Appendix F.

Remark. This theorem demonstrates the fact that many higher level operations
(e.g.. involving thinning and thickening) can be efficiently implemented by the three
fundamental operations. Using the same design methodology as the *‘salt and
pepper” noise removal, we can design many similar algorithms, such as spur
removal, bridge break, and edge detection (perimeter). For example, the detection of
the 4-connected or 8-connected edge of an image X (Fig. 12) can be achieved by

X/(XeN)=XuU(XeN)
or

X/(XOoN)=XuU(X®N,).

THEOREM 3.4 (size and location verification).  The locations in an image X of the
regions including the reference image R and included in the reference image Q. where
R C Q. can be detected by

s(xe R)/((Xxe0)e0)=s((XeR)u(Xe 0 e 0)).

where S(-) means the homotopic skeletonization. (An example is given in Fig. 13.)
Proof. Appendix G.

The above theorems serve as the typical rules for morphological image processing.
{n fact, there are many ways to analyze the shapes and sizes of an image by using
only the three fundamental operations. As another example: comparing an image X
with its convex hull C( X)) [34] is a useful technique to analyze shape. If there i1s only
one object or objects separated by distances greater than their own diameters in the
image X, then its convex hull is the intersection of projections (Fig. 14(a)).

4

N(xe6!).

=1

where @, = 1,2,3,4, are H V_ R, L, (defined in Definition 3.4), and & should
he greater than the longest radius of objects in X. Then the difference of the convex
hull and the image C(X)/X indicates how many concavities the image X has and
what their individual shapes and sizes are. Figure 14(b) illustrates an example.
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]

X@ v

Ci(X)

G

FiG. 14. (a) An example of the convex hull of an image X (implemented by the intersection of
projections). (b) The difference of C(X) by X.

4. RELATIONSHIP TO OTHER COMPUTING THEORIES

4.1. Relationship to Boolean Logic

BIA can implement any boolean logic operation on binary images. It is also
obvious that BIA fundamental operations can be implemented by a boolean logic
gate array with interconnections. The following straightforward correspondence can
be drawn between the BIA operations and boolean logic operations:

BIA operations Boolean logic operations
1. Complement NOT
2. Union OR
3. Dilation Multiple-input OR
4. Intersection AND
5. Erosion Multiple-input AND
6. Symmetric difference EXCLUSIVE-OR

Note that the inputs of OR and AND (corresponding to union and intersection)
come from two different images. The multiple inputs of OR and AND (correspond-
ing to dilation and union) come from the same image while the other operand image
R only determines the number and location of input pixel values. A complete logical
set is able to implement any boolean logic function: it consists of at least one of the
following sets: NOT and OR; NOT and AND; NAND; NOR. In BIA, in order to
tmplement any image transformation, we need a complete system of pixelwise logic
operations and we also need a translational type of operation (such as, translation,
dilation, erosion, convolution, and correlation) to allow the global information
extraction in an image or the information exchange between pixels of the same
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images. In order to have a 2D compact parallel form of image processing algorithms
whose variables are whole images, we define the parallel form of those correspond-
ing boolean logic operations as BIA operations. In fact, there are two boolean
algebras (P(W); U, N, ~, 3, W) and (P(W); 8, N, 7, T, W), supported by BIA
also (Subsection 4.4). We can define several possible sets of fundamental operations
for implementing any image transformation, such as a parallel form of NOR (or
NAND or (NOT and OR) or (NOT and AND)) and a translational-type operation
(e.g., translation, dilation, erosion, convolution, and correlation). The reasons that
we choose complement, union, and dilation as the three fundamental operations
are:

e Nice mathematical properties. The dilation is commutative, associative, and
distributive over the union; but the erosion has no such properties.

e Simple hardware implementation. These three operations are easily imple-
mented by the 2D gate array and 3D interconnection technique.

¢ Simple software design. These three operations are inherently parallel and
frequently used operations. Algorithms can be written as compact formulas which
easily become very efficient fast parallel algorithms by simply applying the funda-
mental operations and removing the data depende. cic

Comparing BIA with the conventional boolean expressions for logic functions.
the major advantages of BIA are summarized in the following:

* BIA operations are inherently parallel, but boolean logic operations are
serial.

e BIA operations include parallel information transferring capabilities which
are missing in boolean logic operations.

e Algorithms in BIA are written as compact algebraic formulas whose vari-
ables are whole images, while a typical image processing algorithm is very difficult
to write in a compact precise boolean logic expression.

¢ BIA has pictonial physical meaning, while boolean expressions provide little
physical feeling for parallel image processing algorithms.

4.2. Relationship to Symbolic Substitution and Cellular Logic

Symbolic substitution is a means of performing parallel digital computations and
can be used to implement boolean logic, binary arithmetic, cellular logic, and Turing
machines [37, 38). It involves two steps: (1) recognizing all the locations of a certain
spatial pattern within the 2D input data and (2) substituting a new replacement
pattern wherever the search pattern was recognized. BIA can be used to realize a
symbolic substitution rule,

(XoR)oQ=(XeoR)u(X@R,)e0,

where X is the 2D input data, R = (R,, R,) is the reference image pair correspond-
ing to the search pattern (R; and R, define the foreground and the background of
the search pattern, respectively), R defines a reflected reference image given by
R = {(~x, —y)|(x, y) € R}, and @ is the reference image corresponding to the
replacement pattern. Thus, symbolic substitution rules are particular BIA image
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transformations having the above form; and BIA represents a general complete
systematic mathematical tool for formalizing the symbolic sut stitution algorithms.

Cellular logic architectures have been briefly reviewed in Section 1. A cellular
logic operation transforms an array of data into a new array of data where each
element in the new array has a value determined only by the corresponding element
in the original array along with the values of its neighbors (Fig. 1). In BIA, an image
transformation can be written as a polynomial of reference images (Theorem 2.1),
where the reference images can have arbitrary large size. In terms of cellular logic,
the reference image essentially defines the neighborhood of a cell where the
neighborhood can be very large and not just nearest 4- or 8-neighborhood as in
conventional cellular logic. Thus, cellular logic operations are also particular cases
of image transformations with small local reference images, and BIA also serves as a
systematic mathematical tool for formalizing cellular logic.

Because of existing hardware interconnection limitations, it is difficult and costly
to implement an image transformation with a large reference image in one clock
cycle. In addtion. the conventional nearest-neighbor connected cellular arrays have
poor communication capabilities. To improve this, we develop the DOCIP-hypercube
architecture in Section 5, which combines features of conventional nearest-neighbor
connected cellular logic architectures and conventional hypercube architectures for
implementing BIA effectively.

In summary, BIA provides a systematic mathematical formalism for both sym-
bolic substitution and cellular logic. The applications of symbolic substitution and
cellular logic can be accomplished by BIA; on the other hand. generalized cellular
logic architectures are good candidates for implementing BIA.

4.3. Relationship to Linear Shift Invariant Systems,
Convolution, and Correlation

It is well known that the theory of linear shift-invariant (LSI) systems plays a key
role in conventional signal (including image) and system analysis [39, 40]. It is very
natural that we like to ask what the relation between BIA and LSI system theory is.
A system is defined as a transformation or mapping from a set of input functions
into a set of output functions, and a 2-dimensional discrete LSI system is defined as
a system which obeys two properties:

* Linearity. T{ax(i, j) + bz(i, j)} = aT{x(i, j)] + bT[z(i. j)] for arbitrary
constants a and b;

¢ Shift-invariance. Y(i, j) = Tlx(i, )] = y(i — k. j — ) = T[x(i — k.
=)

A linear system can be completely characterized by its unit-impulse response
rt, jik 1) = T[8Gi — k, j = 1)]. In an LS! system the unit-impulse response is
siumply r(i, ji k. 1y = r(i — k, j — I), and the output of an LSI system with input
v ) and unit-impulse response (i, j) is the convolution of x(i. j) and r(i. j).
denoted by

o

x(i, j)*r(i, j) = Z x(k Yyr(i =k, j=1).

k,l= o
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Now, let us consider only binary images. In terms of the set notation, an image
X = {(i, )x(, j) =1} corresponds to function x(i, j). If we assume r(i, j) =1
at and only at n points which correspond to an image R with n image points, then
the convolution of x(i, j) and r(i, j) with a threshold r = 0 is

X+ Rl = {(i, /)

kol

Yox(k, tyr(i —k, j—1) > 0}

- {(z + kDT Xk )G ) > o}

k, 1

={(i + k. j+Dlx(k.Dr(i, j) > 0}
={(i+ k. j+ Dl j) € X. (k1) & R}
=X& R,

where the output of the threshold is defined as 1 if x(i, j)*r(i, j) > 0, and is 0
otherwise; and the universal image, as before, contains all image points (i, j). (k. /)
and (i + k, j + I). This means that the dilation X @ R is the same as adding a
threshold ¢ = 0 to the convolution sum. The reference image plays a role similar to
that of the unit impulse response in the binary image system. Similarly the erosion
X © R is the same as the convolution x(i, j)* r(—i, —;) followed by the threshold
t=n-1

Correlators have been used 1n pattern recognition for a long time [41]. Correlatior
is strongly related to convolution: convolution involves folding, shifting, anc
summing; correlation involves shifting and summing without folding. Therefore,

X®@R=XeRl,_o=XoR|,_,
XeR=X» lél,_,,,l =XoR|..,

where * means convolution, ¢ means correlation, and R means the reflectec
image of R.

Furthermore, although the three fundamental operations of BIA are nonlinea
with appropriate number representations they are able to implement parallel numer
ical and linear operations t00. Also, BIA can implement both shift invariant an
shift variant image transformations.

4.4. Some Standard Algebraic Structures
Some algebraic structures supported by BIA are:

1. (P(W), &) is a semigroup.

2. (P(W), ®, I)is a monoid.

3. (P(W), A, @.5)is an abelian group.

4. (P(Wy,u,.n, @ . W)and (P(W).a.N, .2, W) are Boolean algebra
5. (P(W}); C)is a poset (partially ordered set).

6. (P(W)Y, U, N, C)is a complete lattice.
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Proof. (1) A semigroup is a set with an associative binary operation [30-32]. By
Theorem 3.1, the dilation @ is associative for all images in P(W).

(2) A monoid is a semigroup with an identity [30-32]. By Appendix D, the
dilation has an identity I = {(0,0)}. Note that (P(W); ©) is neither a semigroup
nor a monoid.

(3) A group is a monoid in which every element has an inverse. An abelian
group is a group in which the operation is commutative {30—32]. By the definition
of symmetric difference (mod 2 image addition), it can be easily verified that its
identity is @ and its inverse operation (mod 2 image subtraction) is itself.

(4) A boolean algebra is a set with operations V, A, ~, 0, and 1 satisfying:
1.avb=5bVa, aNb=>5bAa (commutativity); 2. aV (bAc)=(aV b)A
(aVe), an(bVc)y=(anb)V(aAc)(associativity): 3. a V 0 = a (universal
bound); 4. a A 1 = g (universal bound); 5. a Va =1, a A @ = 0 (complementar-
ity) [30—32}. By Appendix D, (P(W); u. N, . 8. W)and (P(W); 8. N, , 0. W)
are Boolean algebras,

(5) A poset is a set with a relation satisfying: 1. the reflexivity; 2. the
antisymmetry; and 3. the transitivity [30-32]. The relation C satisfies these three
conditions: 1. X C X forall X € P(W); 2.if XC R and R C X, then X = R: and
3 if XCRand RC Q, then X C Q.

(6) A complete lattice is a poset (S; <) in which every subset of S has a sup
(the least upper bound) and an inf (the greatest lower bound) [30-32). In the algebra
(P(W); U, N, C), given any subset of P(W), say { X(0)|0 € ©} (O is the index
set of the elements in this subset of P(W)), we have

sup = U X(8)
8O

inf = () X(9).
[ 2LC]

Thus, several standard algebraic structures and their properties can be directly
implemented and used in BIA.

5. IMPLEMENTATION ON OPTICAL CELLULAR LOGIC PROCESSORS

To map algorithms into architectures, we first use an algebraic approach for
describing a cellular image processor. Then we design the digital optical cellular
image processors (DOCIPs) and their optical implementation. Figures 15 and 16
show an optical concept for the DOCIP implementation. The optical system can
realize an array of cells by a spatially parallel 2D array of optical binary gates and
performs interconnections of these gates by an optical hologram. The DOCIPs are:

* The DOCIP-array (Fig. 15), a cellular array processor, which uses optical
parallelism to map an inherently 2D parallel data structure to a 2D nearest-neigh-
hor connected cellular computer in a simple and direct way; its performance is
primarily limited by its O(1) interconnectivity, and

¢ The DOCIP-hypercube (Fig. 16), a 2-dimensional cellular hypercube, which
uses optical parallelism and 3D global interconnection capabilities to implement a
hypercube interconnection.
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-— Connections in the DOCiIP-array4 Opticai Feedback Path
=) Connections in the DOCI *-array8

Intarconnection Unit
(implemented by

*——— imagin
ging optical hologram)

| N
v
N
N x N Output Side of Array of Cells N x N Input Side of Array of Cells
(implemented by optical gate array) (implemented by oplical gate array}

F1G6. 15. An optical 4-connected or §-connected cellular array (DOCIP-array4 or DOCIP-array8).
Imaging optics are omitted for clarity. Each cell connects with its four nearest cells and itsell by optical
3D free interconnection. The optical hologram provides both intra-cell and inter-cell interconnections.
The input and output sides of the optical gate array are interconnected by an optical {eedback path and
are shown separately for clarity.

Here, the 2-dimensional cellular hypercube is used to match the structure of a
2-dimensional image and further improve the communication ability of a cellular
array. Ideally, a conventional hypercube (Fig. 17) increases the interconnectivity 1o
O(log N) for N computation cells; however, when laid out in 2-dimensional space,
its interconnection patterns are not space invariant; such spatial invariance is
desirable for image processing and for simple implementation in optical hardware.
To include this, we increase the interconnections to make a 2-dimensional cellular
hypercube (Fig. 18). The cellular hypercube introduces a symmetrical positive and

g

~— Connections in the DOCIP-hypercubed Optical Feedback Path

=) Connections in the DOCIP-hypercubes

Interconnection Unit
(implemented by

@——— magin
9 optical hologram)

N
N
N »x N Output Side of Array of Cells N x N input Side of Array of Cells
{'mplemented by optical gate array) (implementad by optical gate array)

F1G. 16. An optical 4-directed or 8-directed cellular Lypercube (DOCIP-hypercubed or DOCIP-
hypercubeR). Each cell connects with cells in the 4 dircctions or & directions at distances 1,2.4.8,.. ., 2
from it by optical 3D free interconnection
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(0000) —(0001) (0010) (0011)

| L

(0100) (010%) (0110) (0111)

(1000) (1001) (1010) {(1011)

1 |

(1100) (1101) o) o

FiG. 17. A conventional hypercube (4-cube) laid out in 2-dimensional space. Its interconnections
have no spatial invariance.

— Connections in the 4-directed cellular hypercube
=) Connections in the 8-directed cellular hypercube

. . ey
\ 11 011 {10.¢11) (-01.011) (00.¢11) {e01.011 / 210,11 {o11.¢1
(3 1.+10) (-10,¢10} [-01.+10) (00.10) A.HO* (10,010 (o011, 410!
(-nnon\ 10,401 {-01,401)| (00,401} (+01.401} (10,601} L(at1,e0t
—_— =
] .
wse 1{.11.00) {-10.00) {-01,00) =t (00.00) («01,00) (+10,00) (+11,00) | oss
— -
(11.0t) { 10.-01) (-01,-01) ( 00.-01} (.0\,-0|)N (:m (¢11,.01

=3

10,-10) (~0|)/) (00,-10) (+01, 10)| (+10.-10) (+11.40
RIS 110 {-01.-11) (00, 11} (+01, 1) (e10,-11) (‘n,ni

F1G. 18. A 2-dimensional cellular hypercube — DOCIP-hvpercube. Each cell is interconnected with
other cells having a relative one bit difference in coordinate label in positive or negative v and 4
directions to achieve a spatially symmetric and invariant interconnection pattern. Only connections from
the central cell are shown: all cells are connected identically so the resulting interconnections are space
mnvariant
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negative index so that each cell 1s connected with cells having a relative one bit
difference in coordinate label in positive or negative x and » directions; the
numerical difference of addresses of connected cells is nonzero in at most one bit
[42].
5.1. Algebraic Description
Having defined cellular automata and the implementation requirements of BIA,
we describe the DOCIP in an algebraic way:

DEFINITION OF CELLULAR AUTOMATA. A cellular automaton is an algebra
A = (S; F, N,), where § is the state space which is a set of states. F is a family of
transition functions, and N, is the neighborhood configuration.

CONSTRAINTS OF IMPLEMENTING BIA.
1. SO P(W)
2. Fo{e®. u. )
I NDIVUAUATUBUB ! (or N>4UA 'UBUB ') where
* 2 ™ means "“‘contains.”

Thus, in terms of cellular automata, the DOCIPs have to satisfy the above
constraints for realizing BIA. For storing input images and temporary results in a
more flexible way, the DOCIPs utilize three memory modules and share the same
algebraic structure (except the neighborhood configuration):

DOCIP = (P(WX WX W), ®. U, " N).

where * X denotes cross product and N, can be one of the following four types:

1. DOCIP-array4. Each cell connects with its four nearest neighbors and itself,

N,

arravd

=/UAUA'UBUB !,

2. DOCIP-array8. Each cell connects with its eight nearest neighbors and itself,

1
Narrayx = U A'B’.

o= -1

3. DOCIP-hypercubed. Each cell connects with itself and those cells in the four
directions at distances 1,2,4,8,....2* from itself, i.c..

Nhypcrcubd = U (4" B').

=0, 41,082, 02t

where £ is sufficiently large for the connections to traverse the entire array of cells.

4. DOCIP-hypercube8. Fach cell connects with itselfl and those cells in the
eight directions at distances 1,.2.4.8.....2" from itself, i.c..

thpcnuhcu - U (AUB UAB UAB ).

=0, 41,02,
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5.2, General Description

From the above algebraic des:ription, the DOCIPs have the same algebraic
structure and differ only in their neighborhood configurations N,. Thus, they share
the same architecture as shown in Fig. 19, but have diflerent configurations of the
reference images E, depending on the optical interconnection network which
defines the neighborhood. In practical applications, a larger reference image R can
be generated from a set of smaller reference image(s) £, by a “sequential dilation.”
If it is possible to decompose R into a sequence R = E, & E, ® --- @ E,, then

XOoR=(--((X®E)®E,)® - &L,).

This decomposition may not exist; in which case R can always be decomposed as
R =R, UR,U -+ UR,, and then

X®R=(XOR)U(XBR,)U---U(X®R,).

where each R can be composed from the smaller reference images E,.

Basically, the proposed DOCIP as shown in Fig. 19 is a cellular SIMD machine
and consists of an array of cells or processing elements (PEs) under the supervision
of a control unit. The control unit includes a clock, a program counter, a test and
branch module for feedback control, and an instruction decoder for storing instruc-
tions and decoding them to supervise cells. The array of cells includesa 1 X 3 x N?
bit destination selector, three N X N X 1 bit memories for storing images, a
memory selector, and a dilation unit.

The DOCIP shown in Fig. 19 operates as follows: (1) a binary image (N X N
matrix) is selected by the destination selector and then stored in any memory as the
instruction specifies; (2) after storing the images (1 to 3 N X N matrices), these

== Image Data (NxN Matrix) Control Unit
—= Contro! Signal
Program
Comptement Clock Counter <
U Union
3] Dilation ‘
Instruction Memory T
. L. ] est and
73 and  Decoder ——¥ Branch
/ A s
L Reference Image

emornf— E,
! A
Dest- Memory
image |In ination ".m;.w —= S%l:é:lor Dilation s
E Union (&3]
elector Image
M or Data Out
! NMemory— U
3 ey

Fr. 19 A digital optical cellular image processor (DOCIP) architecture- one implementation of
banary image algebra (BIA). The DOCIP-array requires 9 (or 5) control bits for reference image E,. The
DOCIP-hypercube requires O(log N) control bits for reference image 7
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images and their complemented versions are piped into the next stage, which forms
the union of any combination of images; (3) the result is sent to a dilation where the
reference image specified by the instruction is used to control the type of dilation;
(4) tinally, the dilated image can be output, tested for program control, or fed back
to step (1) by the address field of the instruction.

The entire system can be realized by an optical gate array with optical 3D
interconnections [25-28]. It should be noted that current optical technology has
implemented only arrays of moderately large numbers of gates (500 x 500) at very
slow (~ ms) switching speeds, and alternatively, arrays of small numbers of gates
(2 X 2 to 6 X 6) at fast switching speeds (0.1 us-50 ps) (43, 44]. Current ongoing
research in a number of laboratories looks promising in eventually providing the
needed arrays of large numbers of gates with reasonably fast switching speeds.
Alternatively, control of the DOCIP can be easily realized by using an electronic
host instead of the optical control unit, since control of SIMD systems is primarily a
serial process. The trade-off is a possible inefficiency in the interfaces between
electronic and optical units. Because of this the all-optical approach may be
preferable in the long term. To efficiently utilize optical gates, they can be intercon-
nected with a 2D optical multiplexing technique in which a common controllable
mask is used for ali cells. The optical multiplexing technique has the following
advantages: (1) the DOCIP will no longer require the broadcasting of instructions
from the control unit—instead all cells fan their outputs into a common controlling
mask pixel; (2) it will reduce the number of gates; and (3) each cell has a simple
structure— essentially containing only a 3-bit memory with inverting and noninvert-
ing outputs, and a multiple-input OR gate for dilation [45].

To avoid the well-known drawbacks of conventional computers based on
von Neumann principles [23, 38], the machine in Fig. 19 has one instruction which
implements the three fundamental operations of BIA along with fetch and store.
This design uses the parallelism of optics to simultaneously execute instructions
involving all N? picture elements.

This single instruction has the format

(codiodyody. sy, Sqeee S My Ao ey Ji Jay @y daye .y dp by by b,).

where k is determined by the chosen neighborhood configuration N.. The DOCIP-
array requires k = 5 or k = 9 bits for controlling reference image R at a clock cycle
and the DOCIP-hypercube requires k = O(log N) for N cells, and ! defines the
maximum length of a program: 2. The functions of these 11 + & + 2/ instruction
codes are: .

e ¢ is used to select the image from the input or from the feedback:

* d,.d, and d, are used to select the destination memory for storing the
image:;

LIPS s, are used to select the output from the memory elements;

® n,.n,,....n, are used to control the neighborhood mask, i.c., to supply the
reference image;

e j, and j, are used to flag an absolutc jump or conditional jump:

® ay, a,,...,a, are the address for jump; and

e by b,..... b, are the address of the instruction.
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TABLE 2
Cellular Image Processor Execution Times for N X N Image Data
Technology Conventional DOCIP- DOCIP-
array array hypercube
Operation (electronics) (optics) (optics)
Local
operations o) o) )
Global O(N) O(N) O(log N)
operations or O(N 2y
Communication O(N) o) o(l)
PE « Main Memory or O(N?)
Input/Output O(N) o) o)

or O(Nz)

Note. Table 2 roughly compares the execution time for the conventional electronic
array processor, the DOCIP-array, and the DOCIP-hypercube.

Order of magnitude execution times for image processing on the DOCIP ma-
chines and on the conventional-array processors are compared in Table 2. In
contrast with the DOCIP-array, the DOCIP-hypercube increases the interconnec-
tion complexity to O(log N), but is able to perform many global operations in
O(log N ) time. Comparing with the conventional-array processors having serial or
N-parallel input/output, the DOCIP-array will have the same order of performance
in local and global operations but will be improved in input/output performance,
and in principle could be as low as O(1) in 1 /0 operations. The DOCIP-hypercube
will not only be improved in input/output performances but also in global opera-
tions. With external memory, it can also be demonstrated to be general purpose in
the sense of the ability of simulating any Turing machine. One important feature in
the design of the DOCIP-array and DOCIP-hypercube is that optical 3D free
interconnection capabilities can be used to reduce the cell hardware requirements as
well as solve the global connection and 1,/0 problems which are difficult to solve by
planar VLSI technology.

6. A PROGRAMMING EXAMPLE—SIZE VERIFICATION

B1A and DOCIP architectures can have many applications in character recogni-
tion, industrial inspection, medical and scientific research. Since BIA is able to
implement morphological operations efficiently, the DOCIP machines can efliciently
analyze the shape and connectivity of regions as well as measure their size; they also
have the potential to accomplish any image transformation. Here we illustrate the
programming of the DOCIP machines by a simple size verification algorithm:

* Problem. Given an input image X with 31 X 31 pixels (Fig. 20) which
contains some square objects X,. we want to preserve those square objects X, which
satisfy the condition,

size of R < size of X, < size of Q

where R and @ are reference images as shown in Fig. 21. Other objects will be
eliminated in the output image Y. The expected output image Y is shown in Fig. 22,
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i

F1G.20.  The input image X

Reference Image R Reference Image Q

FiG. 21, The reference images R and Q.

F16.22 The expected output image Y
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e Algebraic expression for the size verification using band pass morphological
filtering (Theorem 3.2),

(XerReR)U(X®Q ®0)
where R = R and Q= Q in this special example.
e Algorithm for the DOCIP-array8.

()?@E-‘ ®E3)U(X’e> E* @E“)‘

where E (Fig. 23) is the allowed reference image with the maximum size at a clock
cycle in the DOCIP-array8, the reference images R = E’ = E® E® E and Q =
E‘=F@E®E®E=RO®FE.
The DOCIP-array8 requires 13 steps to complete this algorithm, its program

(instructions) is in the following:

Assume start with X — M, ( X stored in Memory])

I M@ E—~M(=XeF)

2 M@ E =M (=XaE)

LM@E M (=XoL)

4 My@lE— M (=XoL")

S MO E—~M(=XoE ok)

6. Mok -M(=XoE oL
7 MeE-~M(=-XcE oL
R M oE-M(=XoE oEL)
9 MeE-M(=XoLEeL?)
1. Mo E~M(=XoE'e L)
1M, @ E—~M,(=X0E's E?)

SOOI
SOOCOOOOOOOO)
OO0
XOIOCXIDCOOOOCKD|
HOCEIOOOOOCKD
OO
IDOOOOOOOOOCK

Reference Image F
DOCIP-array8 Instruction Code for F
Dppppppyed
DOCIP-hypercube8 Instruction Code for E
0 0 10[010J01010 1010 JO10 [0§0 |0 tpnppppppn

for cells for celis of cells or cells
at distance 8 at distance 4 at distance 2 at distance 1/0

Fio 23 An allowed reference i...age F at a clock cvele in the DOCIP-arrav® (also allowed in
DOCIP-bypercubeR) and its corresponding 9 (or 33) bits in instruction (s, - n,) for controlting the
neighborhood mask (i.e . the reference imuge for the dilation).
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o

IOCIIOOOTD!
OO0
OO0

OOOOCOOCOIC

Reference Image

X
B
5
x
K
x
u
N
X
3
P

DOCIP-hypercube8 Instruction Code for P

0 0 1 1
for cells for cells or cells or cells
at distance 8 at distance 4 at distance 2 at dJistance 1/0

FiG. 24, An allowed reference image P at a clock cycle in the DOCIP-hypercube8 (not allowed in the

DOCIP-array8) and its corresponding 33 bits (assume 31 X 31 cells) in instruction (n;n, -~ - nyy) for
controlling the neighborhood mask (i.e., the reference image for the dilation).

e Algorithm for the DOCIP-hypercube8.

(T@P@ﬁ@P@E}u@@P@EZ@P@EW

where P (Fig. 24) and E (Fig. 23) are allowed reference images at a clock cycle in
the DOCIP-hypercube8, the reference images R=E>=P@® E and Q = E* =
POE*=ROE.

The DOCIP-hypercube8 requires 10 steps to complete this algorithm, its program
(instructions) is shown in the following:

Assume start with X — M, ( X stored in Memoryl)
L MoP—M(=Xo0Pr)

L M@FE+M(=X0POE)

I MeE-M (=XoereoE?)

4 MePr-M(=XePrPoE opr)

b
A AT A 5 Yo YeTs
X WO 3 38 58088
x X X X X X X MK X K
= n o ! o X ¥ X
» X X x XX X o X o X
X X X X N KX X
X X X > n X X XX XK
A %A ) A6 AOOAN
N XA X W AEAAN
| ® 4, ! AR KK R XK
X XX x XX % ol
g B8 A 58 55888
X x n NABRAN
o B o X N 5NN
! B x o 58808
x xR X X X X e T.4. >
X XX * XX AN 58
x X X x "o XXX XK
X x X X X x X X x X M
Y X ¥ X X X X 3 X X X
X xx X xR X XX X
ot * X = A ¥ % % o X
» ¥ X x XX X X X %X
A x & ! A A ARRAR
N o8 X o2 ARS8
X X R XX .1 01
A X o X o NERHEN
! AR oS )N XX XN
» X x X W KENAN
5 8! 6 X R Bttt
& A8 0 A 8 SRR AR

F16 25 The locations of the desired objects in the output image Y-
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S MOE-M(=X0rok orot)

6 MoPr—M(= Yoro I-.:eDI’)

7 M ®E M (= i@ﬁ@l{lml'mﬁ)

R MoE-M(=Y0Pro i orok?)

9.XI_ZUM_‘—0M,< (Yeroterer)u(X¥eretiarer?))

10. End with M, — Y(=()7’€BI’@E eali)u()?@l’@lfzaal’@lfz))

The above programs can be translated into the machine instruction codes directly.
If we want 1o detect the geometric centers (locations) of the desired objects, then we
can use a sequential thinning to achieve the homotopic skeleton (Theorem 3.4) (Fig.
25).

7. CONCLUSIONS

We have summarized digital optical cellular image processing, including binary
image algebra (BIA) and the DOCIP architectures. BIA suggests a unified theory of
parallel binary image processing for developing parallel algorithms /languages and
can be generalized to grey-level images. Applications of BIA in binary image
processing are illustrated. The DOCIP architectures, especially the DOCIP-hyper-
cube, utilize the parallel communication and global interconnection capabilities of
optics for avoiding communication bottlenecks and matching BIA parallel algo-
rithms efficiently. A size verification algorithm is used to demonstrate the program-
ming of these 1-instruction DOCIP machines. Overall, BIA is a simple, precise, and
complete algebraic theory of binary images; the DOCIP machines have simple
organization, low cell complexity, and potentially fast processing ability.

APPENDIX A

Proof of Lemma 2.1. We start with the case of X = R and then the case of
X + R.

Case 1. X = R,ic., R = X. We want to prove

(Ye)\")u(X@})ul =Je(XeX)u(xeX)nI=1

1. Claim I c (X® X)u (X@® X)n 1

o (0.0 (X X)U (Xea,\")
= (0.0 (XeX)u(Xe X)
H[(00)(:2()&'6!3)()]/\[(OO)GE(X(BX)]
(a) Claim (0, ())é(X(BX) Assume (0, O)G(/\ <] \)
- (0.0) € {(a+ (—x), b+ (—y)) € W|(a, bye X. (—x. vy € \}
= (0.0)e {(a-—x,b-—y)e W|(a.b)& X, (x.y)E X}
— 3 (ud— x,b-y)=(0,0) where (a. b) € X. (x, y)E X
=+ 3(x. ) = (a.b)ywhere (a. h) &€ X, (x.y)€E X
which is impossible, since (x, y) = (a, b) & X contradicts with (x, y) =
(a. b) € X. Therefore, the assumption is wrong, we have that (0.0) ¢
(X‘B )()
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(b) Claim (0.0) € (X ® X). Assume (0,0) € (X & X)
=200 € {(x+(—~a), y+(-b)e W|(x,y)€E X, (—a.—-h) €
X}
- (0,0)€ {(x —a,y —b) € W|(x,y) € X,(—~a, -b) & X)
2 0.0 {(x—a,y—byeWi(x,y)€ X, (a,.b) & X}
— 3 (x ~a,y—b)=(0,0) where (a, b) & X, (x,y) € X
— 3(x, y) =(a,b) where (a,b) € X, (x, y) € X
which is impossible, since (x, y) = (a, b) & X contradicts with (x, y) =
(a, b) € X. Therefore, the assumption is wrong, we have that (0,0) &
(X & X).

By (a) and (b), we have [(0.0) & (X ® X)] A [(0,0) & (X & X)]. ie..

Ic(XeX)u(xeX).
We also know I C I, then we have

Ic(XeX)u(XeX)nT.

2. Claim (X ® X) U (X® X) U T C L Since I C . it implies

(,?@,\’)U(Xe})ui =()_(€BX’)U(X®})HICI.
From (1) and (2), we have

Ic(XeX)u(xeX)nI
and

(Xe X)u(xeX)ul ~(XeX)u(xeX)nicl.

Thus, by the equivalence of sets, we have (X @ X) U (X @& X) n /=1
Case 2. X # R.ie, R # X. We want to prove

(XoR)U(X®R)UI =2 o (X@R)U(X®R)NI=0.

1. Claim I ¢ (X@ R)U (X ® R)
= 0,00e(X®R)U(X®R)
< (0,00 (X® R)U(X®R)
- (0,0)e (X ® R)V (0,0) € (X ® R):
Now we assume (0,0) € (X ® R) A (0.0) & (X ® R):
(a) I (0,0) & (X ® R)
- (0,0) € ((a + k, b+ [)|(a. b) € X, (k. [) € R}
= (a+ k. b+ DH+00),V(a.b)e X.V(k.I)ER
- (a, by # (—k,-1), ¥ (a.b)& X,V (k,I)ER
= V(k.[)e R I(a,b)e X, (a,b)y=(—k, 1)
>V (-k.-l)e R, 3(a b)e X.(a,b)= (k. —-1)
-V (i, j)€ R I(a.b) € X (c.b) = (i, J)
- ((i. )Y€ R) > ((i. )€ X)
- Rc X
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(b) 1 (0,0) & (X & R), then X C R. Since the di[a}ion operation’is commu-
tative, by interchanging the variables X and R and applying the same
procedure as (a), we have X C R.

2. By the above (a) and (b), we have X = R which contradicts with X # R.
Thus. the assumption 1s wrong, and we get
(0.0)e (X® R)V (0,0) € (X ® R)
olz(X®R)U(X®R)
s> (XoR)U(X®R)NI=0
“(X®R)U(XBR)UI = g,
Hence, by Cases 1 and 2, we have shown that

()7&9R)u(XeaE)ui={’ if X = R,
| @ otherwise.

APPENDIX B
Proof of Theorem 2.1. Consider any image transformation (general case),

X, — 4,

T XZ?AZ

X A,

where X, € P(W). 4, € P(W), i=12...,1
If we choose R, =X, 0, =4, i=1,2,...,! and use Lemma 2.1 and some
properties of the dilation (ie., /® X=Xand @ ® X = &), then we have

T(X) = U{(Yek,)u()(e?,)ui ® Q).

i1=1

Since some images X, may map into the null image @ for a given image
transformation, by Lemma 2.1 we have that

T(X) = LAJ{(Y@R,)U(XQIT,)UI_ ®Q,}.

where k < I, I = #(P(W))is the cardinality of P(W).
APPENDIX C

Proof of Theorem 2.2. This can be shown in a very straightforward way. Any
image is a set of image points and is the union of point images (consisting of one
and only one image point). A point image {(i. J)} can be written as

(i)} = Ap

Hence. the union of all point images which are contained in X is the image X. For
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example, an image X = {(2,0), (1, —1), (= 1,2)} is denoted by

X=A"UAB 'uU 4" B2

APPENDIX D

1. Properties of Complement and Difference

The complement ", a unary operation, is decreasing and shift variant (considering
the outside of an image). The difference X/R, a binary operation, is increasing (but
decreasing with respect to the reference image R), antiextensive with respect 10 X,
and shift variant (the reference image R is fixed once it is given). Note that the
difference operation is not commutative, not associative, and not distributive over
other operations. Furthermore, the difference operation is more complicated than
the complement. Hence, it is preferable to employ the complement as a fundamental
operation, but not the difference. The major properties of the complement and the
difference are listed in the following:

%]
= X (idempotent for twice complements)
X/ @ = X (idempotent for a given reference image R = @)
X/X=20
X C Y o Y C X (decreasing)
. XCYe X/RC Y/R (increasing)
. X/R C X (antiextensive)
. XCRe X/R=20

© XN A e N~

o - S
poy
=
=
i
o
C
>

N
N ¢ >
c>cC

where R = {(—x. =»)|(x.y) € R}
. where R = {(—x, =¥)|(x, y) € R}

3=
> >
8
= =
o
el i

2. Properties of Union and Intersection
The union U, a binary operation, is increasing, extensive, shift variant. idempo-
tent, commutative, associative, and distributive over intersection. The intersection
M. a binary operation, is increasing, antiextensive, shift variant, idempotent. com-
mutative, associative, and distributive over union. The major properties of the union
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and the intersection are listed in the following:

1.

10.

11.

Xug=X
XN@=2090
XuX=X
XNX=X

. XU R = R U X (commutative)

X N R = RN X (commutative)

XU(RUQ)= (XU R)U Q (associative)

XN (RN Q)= (XN R)N Q (associative)

XuW=Ww

X N W = X (idempotent for a given reference image R = W)
XU(RNQ)=(XUR)N (XU Q) (distributive)

XN (RUQ)=(XNR)U (XN Q) (distributive)

. X € X U R (extensive)

X N R € X (antiextensive)

. XC Ye XURCYU R (increasing)

XCYe XN RCYNR (increasing)

. XCRe XUR=R

XCReXNR=X

RCXAQCX->RUQCLX
XCRAXCQ—->XCRUQ

RCXAQCY->RUQCXUY
RCXAQCY—-RNQCXNnY.

3. Properties of Dilation and Erosion

The dilation ®, a binary operation, is increasing, extensive for a given reference
image R which contains the elementary image I, shift invariant, commutative,
associative, distributive over union, and possesses an identity which is /. The
erosion ©, a binary operation, is shift invariant, increasing (but decreasing with

respect

to the reference image R), and antiextensive for a given reference image R

which contains the elementary image /. But, in general, the erosion is not commuta-
tive, not associative, not distributive over other operations, and does not possess a
left identity. The major properties of the union and the intersection are listed in the
following;

1.

X & R = R & X (commutative)
X ©& R # R © X (in general)

. (X®R)® Q=X (R® Q) (associative)

(X© RS Q+ XB(R® Q)(in general)
(X6 R)YOQ=(XO Q)6 R

. XB(RUQ)Y=(X@ RYU (X & Q) (distributive)

X6 (RUQ)=(XOR)N(XO0)
Xo(R®Q)=(XOR)O (Q

. X®I=X=1® X (identity)

Xoel=X+16 X(in general)
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5. X0 O =0U=06KX
X6 v =W+ J o X (in general)

6. X C X ® R when I C R (extensive)
X & R C X when I C R (antiextensive)

7. X Yo X®RCY® R (increasing)
X C Yo X6 RCYOR (increasing)

8 RcQeoXdRCcX®Q
RcQe XoQcCXoeR

9. X® (RN Q)T (X & R)N (X Q) (distributive inequality)
Xe(RNP)o(XeR)u(Xe )
(XUY)ORD(XOR)YN(YER)
(XoeR)y#aQc(X®R)o 0
Remark. * D ™ means “contains.”

4. Properties of Some Standard Operations
1. The symmetric difference is shift vaniant (with a fixed reference tmage R).
commutative, and associative. Symbolically,
(a) XaR =RaX
(b) Xa(RaQ)=(XaR)aQ

) Xad =X
(d) XaX=0
() XaX=W
(f) XaW =X

(8 XN (RaQ)=(XNR)a(XN Q)

(h) X U (RaQ) # (XU R)A(X U Q) (in general)

(i) XaR=YaR- X=Y.

2. The opening ° is shift invariant, increasing, antiextensive, and idempotent.
The closing - is shift invariant, extensive, and idempotent. Symbolically,

(a) XeRC XC X-R

(b) XCY—>XeRCVYeR

(c) XcY->X-RCY-R

(d) (X°oR)eR = XoR

(e) (X-R)-R=X-R. )

3. The thinning is shift invariant and antiextensive. The thickening is shift
invariant and extensive. The major properties are in the following:

(a) X®RC XCT XOR

b)) XC Y- XORCY®O®R

(c) XCY>XORCYOR.

(d) If R € Q (which means R, € Q, and R, C Q,). then we have

RCQ->X@RCX®QCXCXOQCXOR.

(¢) XOR= X® R*, where R = {R,, R,} and R* = {R,. R,}.
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APPENDIX I

Proof of Theorem 3.2. We can easily see that (2) in Theorem 3.2 is a generaliza-
tion of (1) in Theorem 3.2. (1) is used for exactly matching shapes (or templates)
with shift invariance; (2) is generalized to more general cases. For example, to
consider noise and to have rotational invarniance, we can choose the family { R(8)}
to incorporate all aspect reference image pairs. In the following, we prove (1) and
then (2) will follow from it directly. The proof will demonstrate the mathematical
correspondence between boolean logic and BIA. The notations x(i. f) and r(i, j)
will be used to represent the binary values (0 or 1) of pixels at coordinate (i, j) of
image functions which correspond to the images X and R in BIA notations.

First, let us use the boolean logic XOR (exclusive or) operation, i.e..

x(i. JYXOR r(i. j) = (x(d, j) A r(is j)) v (x(is j) A PG ).

to achieve the pixelwise comparison, where the outpat value with “0” means that
“x(i, j)" matches “r(i, j)" and the output value with “1” means that “x(i. j)"
does not match *“r(i, j).”

Second, to check the occurrence of the shape (defined by R with M) in the tested
image X at coordinate (i. j). we have to shift the origin of the shape to the
coordinate (i. j) in X. Then the process of the comparison of the shape and the
subimage in X (limited in the mask M) and the indication of *“match” (0) and “not
match” (1) will be performed by

V (x(e+k.j+DArk.)v V (x(i+k j+1)AF(k.1)).
(k. 1Ye M (A 1Ye M

““

If the above equation is considered as a binary operation operating on two images
x(4, j) and r(i. j), then this operation is not commutative; in order to achieve the
commutativity, we change (k, /) with (—k, —/) and denote F(k, ) = r(—4, —1):

V GFl-kj-Dark)v NV (xti=k.j~1)ArFk.]D)).

(k. heM (- k. hHeM

If the output value of the above equation is “0,” then it means that the location
(i. j) of the image X has the occurrence of the shape (defined by R and M); if *1,”
the shape does not occur at (i, j).

Third, let us run over all coordinates (i, j) (i.e., for all (i, j) € W the universal
image) and then the union of those coordinates with value “0” would be the answer.
The value “0” at a coordinate (i, j) corresponds to the nul. image in set notation
and the value “1” at a coordinate (i, j) corresponds to the point image {(i. j)}. For
convenience, in the following we mix the notations of boolean logic functions and
set notations; if the output of a boolean logic expression is “0,” it represents the
null image &; if **1,” it represents the point image {(i, j)}. Thus, we have

U V (kG -k.j-1yA/HKk D)V

G.DEW N L hHeM

V  (x(i—k,j~ 1) AFk.D))

( k. heM
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which is the same as

U( \Y (f(i—k.j—l)m'(k.l)))

G.peEW Nk -heM
v U( V (x(i—k,j-l)/\;“(k,l))).
U NEW \(—k, -He A

Since x(i, j) # 0 only when (4, j) € X and F(k,[) # 0 only when (k.l)ye R. we
have

U( \' (f(i—k.j—l)m(k,l)))

(LPDEW (-4 -leM
= {(i. jWi—k.j—1)e X (k. I)€R)
={i+ k. j+ NI j)e X (k1) € R)
=Xa®R.

Similarly, we have

U ( V  (x(i=k.j=1)Anrk.1D))| = xo (M/R).

. NEW (k. -heM
Hence, if we use “0” to indicate “match,” we have
(Xe® R)u(xe (M/R));

if we use “1” to indicate “match,” then we have

(X® R)u (X o (M/R)).

Thus, the locations of a shape, which is defined by a nonnull reference image R
with a nonnull reference image (called mask) M and R € M C W, are the image
points in the following

(Y@ﬁ)u(X@(M/l'z))=(i'eaiz)u(Xe>ﬁuk)
=(XeR)n(Xe (M/R)).

A more intuitive illustration is that the foreground X should match R by X 6 R
(using multiple-input AND gates to examine the locations where the 1's should be).,
while the background X should match M/R by X 6 (M/R). Combining both
results by the intersection (AND), we then implement the shape recognition by
(X © R)N (X & (M/R)). Replacing R by R, and (M/R) by R,, we obtain the hit
or muss transform (template matching) for shape recognition.
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APPENDIX F

Proof of Theorem 3.3. (1) The straightforward way for removing the * pepper”
noise is the thinning operation X © R, (or X @ Ry). Following this, we have

(2) The straightforward way for removing the “pepper” noise is the thickening
operation X O Q, (or X © Q). Following this, we have

XO0Q,=Xu(XeM)u(xel)
=Xu(XeM)ux
=Xu(Xe M X)

=(XxuXeM)n(XxuX)
=(xuXeM)nw
=(XuXxem,).

(3) The straightforward way for removing the “salt and pepper” noise is to
take the difference of X® @, by X ® R, (or the difference of X® Q; by X ® R,).
By a similar procedure as above we can achieve the desired result.

APPENDIX G

Proof of Theorem 3.4. To extract the region whose sizes are between two
reference images R and Q, the straightforward way is to design a morphological
band pass filter:

(X°R)/(X-Q)=((XeR)®R)/((XOQ)® Q).

To obtain the locations of those desired regions, we then perform the skelotoniza-
tion:

S{xeR)/((xe Q)8 Q))

i

S(((xe R)e R)/((Xe Q)@ Q))

=S((Ye Ryu(xe ¢ (DQ)).
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Image algebra representation of parallel optical binary

arithmetic

Kung-Shiuh Huang, B. Keith Jenkins, and Alexander A. Sawchuk

A binary image algebra (BIA) that gives a mathematical description of parallel processing operations is
described. Rigorous and concise BIA representations of parallel arithmetic and symbolic substitution
operations are given. A sequence of programming steps for implementation of these operations on a parallel
architecture is specified by the BIA representation. Examples of arithmetic operations implemented on a
digital optical cellular image processor architecture are given.

I. Introduction

Digital optical systems hold the promise of provid-
ing more accuracy, flexibility, and programmability
than analog optical systems, at the cost of somewhat
lower throughput.!'2 To achieve digital optical com-
puting, there are at least three possible logic systems:
residue logic,*® multilevel logic,”!* and binary log-
ic.1112 Because it is much easier to make reliable two
level devices for binary logic and only logok of them are
needed to represent k levels, in this paper we consider
only binary parallel optical computing. A digital opti-
cal cellular image processor (DOCIP) architecture
based on binary image algebra (BIA) has been demon-
strated to be very powerful in parallel binary image
processing.!3-6  This paper demonstrates that the
DOCIP with BIA algebraic techniques can efficiently
perform parallel numerical computations also.

Boolean logic equations for binary arithmetic are
not well suited to highly parallel operations on planes
of data; they do not reflect the location of data except
typically by a memory address. Here we first seek a
software theory for parallel numerical computation
algorithms that simultaneously have binary digital ef-
ficiency and the advantages of optical parallel process-
ing. We have developed a binaryv image algebra
(BIA},!% built from only three fundamental operations
and five elementary images, to serve as a complete
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unified systematic theory for binary pa-~llel image
processing. Now, we show that BIA can also be con-
sidered as a spatial logic which is a generalized parallel
form of Boolean logic with an additional parallel infor-
mation transfer ability. BIA then becomes a formal-
ism and a general technique for developing and com-
paring parallel numerical computation algorithms for
digital optical computers. Previous discussions have
relied solely on pictorial descriptions of parallel arith-
metic operations. BIA provides a rigorous and concise
mathematical description of parallel operations. In
this paper we give these rigorous BIA descriptions for
parallel addition, subtraction, and multiplication.

Symbolic substitution has been considered as a
means for implementing parallel optical arithmetic
operations.!’-19  Symbolic substitution rules can be
described as particular BIA image transformations
(Sec. 5).”® Three different binary number representa-
tions (row-coding, stack-coding, and symbol-coding as
originally described in Refs. 17-19) for binary arithme-
tic in the DOCIP machine are developed. Parallel
operations of binary addition, subtraction, and multi-
plication are derived by BIA and illustrated as exam-
ples. Parallelism is achieved by performing arithme-
tic operations on many pairs of operands
simultaneously. The carries for each pair of operands
are essentially propagated serially to keep hardware
complexity low.?! Thus speed-ups close to linear, and
in some cases equal to linear can be obtained. In this
paper we consider only positive numbers. A suitable
digital number representation will easily provide for
negative numbers also. For example, two's comple-
ment arithmetic can be performed with only minor
madifications to the algorithms and programs given in
this paper. and with the addition of one more bit (the
sign bit) to each operand and result.

Section 2 gives a brief review of BIA and the DOCIP
architecture.  Section 3 presents binary row-coded
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arithmetic: binary addition and binary multiplication
{including a matrix-constant multiplication and an
element-element multiplication). Section 4 presents
binary stack-coded arithmetic. Section 5 gives a BIA
representation of symbolic substitution and discusses
binary symbol-coded arithmetic. Section 6 gives a
comparison for the above different number represen-
tations. Binary subtraction is presented in the Ap-
pendices for clarity.

2. Binary image Algebra (BIA) and DOCIP Architecture

2.1 Review of Binary Image Algebra

Binary image algebra (BIA), extending from mathe-
matical morphology,?? is a synthesis of Boolean logic,
set theory, and image processing. We give here a very
brief summary of BIA. Details are contained in Ref.
16.

A binary digital image is usually defined as a func-
tion f mapping a spatially sampled set of grid points
(x,v) of an orthogonal coordinate system onto the set
composed of two elements: 1 and 0. However, it will

X®R=

{l(x, + x5,y + v € Wlixv) € X, (xp.%,) € Rl

0000000

0011110 8883838

0001110 0011100

0000110 0011100

0000010 0011100

0000000 0000000

000000C 0000000

Taosted X Reference R

Image ‘ Image
AR B TR O B | 0000000 0111111
1100001 0011110 o111111
1110001 00311110 0ot111111
1111001 00111190 0011111
1111101 0011110 0001111
1111t 0000000 00001 11
1111111 0000000 0000000
Complement Y Union XUR Dilation X &R

Fig. 1. Example of fundamental operations: complement —,
union v, and dilation &.

X =lxlxy)e Wi (x,y) ¢ X} )
(b) Union of two images X and R:
X uR={xlxy) e X vixy)e Rl &t
(¢) Dilation of two images X and R:

(X = @) A (R= ), (4)
otherwise.

be more convenient for our image algebra to use only
the set of coordinates of pixels that have value 1 to
specify animage. InBIA, animageisthentreatedasa
set of coordinates of pixels that have value 1. This
paper deals with only binary arithmetic; hence, a pixel
represents a binary bit and an image is a finite 2-D bit
plane. We list here only those basic definitions and
operations which will be referred to later.

Definition of Binary Image Algebra (BIA)

Binary image algebra is an algebra with an image
space S and a family F of five elementary images and
three fundamental operations. Symbolically,

BIA = [P(W);®,u,-,].A4,A7 ,B,B7], )

where S = P(W)and F = (®,u,—,I,A,A",B,BY). The
image space S, the family F, and all other symbols are
defined in the following.

(1) The Universal Image (the bit plane containing
all bits with value 1): The universal image isaset W =
{x,y)x € Zn,y € Z,}, where Z, ={0,£1,£2, ... ,xn}and
n is a positive integer.

(2) Image Space (the set of all possible bit planes):
The image space is the power set (the set of all subsets)
of the universal image, i.e., S = P(W).

(3) Image (bit plane): A set X is an image if and
only if X is an element of the image space S, i.e., X isa
subimage of the universal image W.

(4) Image Point (a bit with value 1): A sampled
point (bit) (x,y) is an image point of an image X if and
only if (x,y) is an element of the set X.

(5) Image Transformation (a mapping between bhit
planes): An image transformation T is a function
mapping the image space S into the image space S.

{6) Three Fundamental Operations (Fig. 1):

(a) Complement of an image X:
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Remark: € denotes belongs to, A denotes and, v de-
notes or, and ¢ is the null image having no image point.
Note that X usually represents an input image and R is
a reference image containing predefined information.
We can define other image operations as fundamental
operations instead of these three operations. Therea-
son for choosing these three operations is because of
their simplicity, simple software design and simple
hardware implementation. Dilation can be interpret-
ed as a parallel mathematical formalism of the pattern
substitution step in symbolic substitution (Sec. 5).

(7) Five Elementary Images: There are five ele-
mentary images:

(a) I = {(0,0)}—consisting of an image point at the
origin,

(b) A ={(1,0)}—consisting of an image point right of
the origin,

(c) A~1={(—1,0)}—consisting of an image point left
of the origin,

(d) B = {(0,1)}—consisting of an image point above
the origin,

(e) B! = {(0,—1)}—consisting of an image point
below the origin.

In fact, these five elementary images could be reduced
to four elementary images, because  =A®d A" '=B @
B~1. Any (reference) image can be represented as

X= U AB, (5)
Gy X
where AB =A'® B,

A-ZABA®. .. ®A={i0)ift>0,
N

'

A A'eA'e. @A =G0l <0,
Nl




AV AeA =1

(8) Reflected Image: Given an image R, its reflect-
ed image is defined as

R={—x,~v)lxy) e R (6)
(9) Some Standard Derived Operations:

(a) Difference of X by R [Fig. 2(a)}:
XR={alx e XA xeRI=XnR=XUuk (7)
Remark: X = W/X where W is the universal image.
(b) Intersection of two images X and R [Fig. 2(b)]:
XaR=lxyMxy)e X r (xv)e Ri= X uR. (8)
Remark: X uR=X nR.

(¢) Erosion of an image X by a reference image R
[Fig. 2(0)]:

XeR=XeR, 3)

where R is defined above. Remark: X @ R = X O R.
The erosion of an image X by a reference image R can
be thought as the complement of the dilation of the
background by the reflection of the reference image R.
In general, the erosion of a non-null image X by a non-
null reference image R decreases the size of regions,
increases the size of boles, eliminates regions, and
breaks bridges in X.

(d) Symmetric difference of two images [Fig. 2(d)]:
XaR=(X/RYU(R/X)=XURURUKX. (10)

Remark: The symmetric difference is a commutative
operation, and is its own inverse.

(e) Hit or miss transform (® of an image X by an
image pair R = (R,,R2) [Fig. 2(e)]:

X@R=(XoR)n(X6R)=(Xek)u(XeRy) (1)

Remark: The hit or miss transform of an image X by a
reference image pair R = (R,R2) formallv describes the
pattern recognition step in symbolic substitution (Sec.
5); and it is used to match the shape (or template)
defined by the reference image pair R where R, defines
the foreground of the shape and R; defines the back-
ground of the shape. The conditions are that the
foreground X must match R; (ie., X © R;), while
simultaneously the background X matches R (i.e,,
X © Ry). Note the similarity of the symmetric differ-
ence (parallel bitwise comparison) and the hit or miss
transform (parallel shape or symbol recognition).

The important results of BIA are: (1) any image
transformation can be implemented by the three fun-
damental operations with appropriate reference im-
ages; (2) any reference image can be generated from the
elementary images by using the three fundamental
operations; and (3) BIA provides an efficient represen-
tation for many parallel image processing algorithms
(e.g., shape and size verifications'’). Here we demon-
strate that BIA is also a fundamental tool for parallel
numerical computation.

R x/R
@
R XnR
(1)

R XeR
()
A % i
X ® X&R
(d)
o 3
¢4 a g t foregrouna POt with value 1
b: background points with value 0
L - au
- B (B )
E AeRy. Ry}
R, Ry
3

i)

A=(Ry. Ry )

;m:zm

g Lo

image X (¢) AGR
Fig. 2. Some standard derived image operations. The shaded
regions in (1)-(d) correspond to pixels with value 1: (a) difference:

(h) intersection; (c) erosion; (d) symmetric difference: (e} hit or miss
transform (template matching).

2.2. Review of DOCIP Architecture

We have designed a class of the digital optical cellu-
lar image processors (DOCIPs) for effectively imple-
menting BIA.'3'> Here we only summarize their ma-
jor characteristics. Details are given in Refs. 14 and
15. To map BIA into the DOCIP architecture in a
transparent way, we first define the DOCIP algebra-
ically:
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Definition of Cellular Automata

A cellular automaton is an algebra A = (S:FN,)
where S is the state space which is a set of states, Fis a
family of transition functions, and N, is the neighbor-

hood configuration. i
Constraints on a cellular automaton for Implement-

ing BIA:
(1S > P(W),
) F ool
(INS>IVAUVAT GBUB Tor N "0 A "UBUB

where O means contains.

Thus, in terms of cellular automata, the DOCIPs
have to satisfy the above constraints for realizing BIA.
For storing input images and temporary results in a
more flexible way, the DOCIPs utilize three memory
modules and all share the same algebraic structure
(except the neighborhood configuration):

DOCIP = [P(W X W X Wke,.~.N, ], {12)

where X denotes cross product and N, can be one of the
following four types:

(1) DOCIP-array4: each cell connects with its four
nearest neighbors and itself, i.e.,

N =/_AvA' B B (13

'arrav-l
(2) DOCIP-array8: each cell connects withits eight
nearest neighbors and itself, i.e.,
A”nrra\-rl = U A'B. (14)
N y=-1
(3) DOCIP-hypercubed4: each cell connects with
those celis in the 4 directions at distances 1,2,4,8, ... ,2*
from itself, i.e.,
(4' o B, (15)

4

thpen'uhﬂ = v
r=idl 2l e 34
where k is sufficiently large for the connections to
traverse the entire array of cells.
(4) DOCIP-hypercube8: each cell connects with
those cells in the 8 directions at distances 1,2,4,8, . .. ,2*
from itself, i.e.,

[ (A B A'BC L AR (16)
FEIY ISR Sl

,
N hvperrubeR ~

From the above algebraic description, the DOCIPs
have the same algebraic structure and differ only in
their neighborhood configurations N.. Thus, they
share the same architecture shown in Fig. 3, but have
different configurations of the reference images E; de-
pending on the optical interconnection network which
defines the neighborhood. In practical applications, a
larger reference image K can be generated from a set of
smaller reference image(s) E, by a sequential dilation.
If it is possible to decompose R into a sequence R = E,
®FE,®...0E,then

XeR=|.. (NoE)oE|e. oL, a7

This decomposition may not exist, in which case K can
always he decomposedas K = Ry u Ry o ... o Ry, and
then
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Fig. 3. Digital optical cellular image processor (DOCIP) architec-

ture—one implementation of binary image Algebra (BIA). The

DOCIP-array requires 9 (or 5) control bits for reference image E..

The DOCIP-hypercube requires O(logN} control bits for reference
image £,.

XoR=(X@R) ) (X@kio .. ulXeR,, (18)

where each R; can be decomposed into smaller refer-
ence images E, 1423

Basically, the proposed DOCIP shown in Fig. 3 is a
cellular SIMD machine and consists of an array of cells
or processing elements (PEs) under the supervision of
a control unit. The control unit includes a clock, a
program counter, a test and branch module for feed-
back control, and an instruction decoder for storing
instructions and decoding them to supervise cells.
The array of cells includes a 1 X 3 line destination
selector, where each line is N2 bits wide, three N X N X
1 bit memories for storing images, a memory selector,
and a dilation unit. It operates as follows: (1) a
binary image (/N X N matrix) is input into the destina-
tion selector and then stored in any memory (or set of
memories) as the instruction specifies; (2) after one to
three images have been stored, these images and their
complements are piped into the next stage, which
forms the union of any combination of images (speci-
fied by the instruction); (3) the result is sent to a
dilation unit where the reference image specified by
the instruction is used to control the type of dilation;
(4) finally, the dilated image can be output, tested for
program control, or fed back to step (1) as the instruc-
tion specifies.

The DOCIP machine (Fig. 3) has one instruction; it
implements the three fundamental operations of BIA
along with fetch and store.?® This design uses the
parallelism of optics to simultaneously execute in-
structions invclving all N*? picture elements. Each
instruction takes one complete cvcle to execute. Note
that the DOCIP machine can perform a dilation by any
reference image I that is a subset of the neighborhood
configuration, N, in a single clock cvcle.

The entire system can be realized by an optical gate
array with optical 3-I) interconnections.'!1>*  Figure
4 describes an optical implementation concept for the
DOCIP architecture. The DOCIP has very low cell
hardware complexity to maximize parallelism, vet
enough cell sophistication to permit the machine to




¢ otput side of
N X N array of
processing  efements

*— - unagg-——

nput side of
NXNPE acay
1 y
4

(optcat gate arrayl

= one Pl intra PE
ang nter PE
nterconnection unit

(optical hotogram)

jopucal gate anay!

Fig. 4. DOCIP physical concept. Each processing element (PE) or
cell connects with its cellular array or cellular hypercube neighbors
and itself by optical 3-I) interconnections. The optical hologram
provides both intracell and intercell interconnections. Intracell
interconnections and imaging optics are omtted for clarity. The
input and output sides of the optical gate array are interconnected
by an optical feedback path and are shown separately for clarity.

execute useful programs. The use of optical intercon-
nections permits a cellular hypercube topology to be
implemented without paying a large penalty in chip
area (the cellular hypercube interconnections are
space invariant which implies relatively low hologram
complexity); it also enables images to be input to and
output from the machine in parallel.

3. Binary Row-Coded Arithmetic

Binary addition of two k-bit numbers yields at most
k + 1 bits, and binary multiplication of two k-bit
numbers yields at most 2k bits. In this paper, we
assume that all input numbers are padded with enough
zeros to avoid the possibility of overflow. This also
guarantees that the different operands in the image
will be treated separately. A binary row-coded num-
ber is encoded in a part of a row of an image. Although
the word lengths of numbers do not need to be equal,
we assume in this discussion that an image (bit plane)
with N X N bits contains N2/k numbers of k-bit length
as a simple illustration (Fig. 5). In this section, we
describe parallel addition and multiplication by BIA
expressions and their programs on the DOCIP ma-
chine. Subtraction is discussed in Appendix A.

3.1. Addition of Binary Row-Coded Numbers

Consider an image X [e.g., Fig. 6(a)] composed of N2/
k numbers x,,i = 1,2,... ,N?/k, an image R [e.g., Fig.
6(b)| composed of N*/k numbers r;,{ = 1,2, ... ,N%/k,
and the output of the addition S = X + R [Fig. 6(c)].
To realize this addition in parallel by means of BIA, we
first consider the serial (carry-propagate) addition of 2
binary numbers s, = x, + r. The first step of serial
addition is to add the least significant bits, say x,.,, and
rao- The Boolean logic equations for adding the two
least significant bits (half-adder) are

sum bit: s, = x,, XOR”F,,.

k bt kbt

ﬂnqlq Ienglq
‘4 N b N bit
O jengmn ———# M——— jengih ———
N bil L2 N bl
fangth I l Ionglln .
l __,\—“l . . IT _,\1 « s 0a TNl
\ TR
Fig. 5. Binary row-coded numbers.
Msg  Lsa
01011 00010 01101
10Q1 . 00111« » = 1 LI
x=5 Difs
1) (b) (c)
Fig. 6. Parallel addition of binary row-coded numbers (I): (a)

image X of operands; (b) image R of other operands; (c) output
X+ R

carry bit: ¢; ) = x,,) AND 1.

Now, applying the corresponding parallel operations
of XOR and AND, i.e., the symmetrical difference A and
intersection n, and shifting the set of carry bits by a
dilation @, we can implement parallel addition by the
following recursive equations:

(1) Define the initial states of images of sum bits
and carry bits (called sum-bit image and carry-bit
image) at time ¢, as

S(ty) =X, Clty) = R. (19)

(2) The recursive relation between the states of the
sum-bit image and carry-bit image at two adjacent
time intervals is then

S(t,,) = S(t) ACE) = 5(t) v Ct) o Sit) v ClEy, (200
Clt,,) =[Sty n Cupl @A™ = Sitiv i) @A™, (2D

where { = 0,1,2,...,k + 1, and the elementary image
A~!is used to shift the carry-bit image one bit to the
left for the next iteration.

(3) Afteramaximum of k + 1 iterations, the sum-bit
image is the result and the carry-bit image is the null
image &:

Sty )=X+R  Clty,) =5 (29)

This procedure is illustrated in Fig. 7. The result of
parallel addition of binary numbers with a maximum
k-bit word size is obtained after k + 1 iterations. This
algorithm can be implemented in the DOCIP architec-
ture by the program (instructions) given below. M,
M., and M, represent the three N X N-bit memories.
X = M, denotes store X into memory M,. Each
numbered line represents a single DOCIP machine
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instruction for one value of i. Comments are in brack-
ets. )
Assume start with X in M,|=8(ty}] and R in
M3[=('(tq))].
First to kth iterations:
(0 M, oM, - M|[=8()uC)],
2y M oM, »M[=58)v i),
() M, U My u My > My|=S(t) L Cle,)],
@ M, v M, -M][=S,)
(5) M, @A™~ M= C,))

wherei{ =0,1,2,... .,k - 1.
(k + 1)th iteration:

(1 M, oM, =M= S, v Ciyl,
(2) My o M, = M[= S(¢,) v CUul.
(3) M, & M, -+ out[= S(,,,) = X +R].

The total number of clock cycles for the execution of
this program on the DOCIP machine is t(k) <5k +3 =
O(k), which is independent of the number of words
being added.

In fact, BIA can be used to devise a parallel form of a
conditional-sum adder or carry-lookahead adder for
further extracting additional parallelism, and the exe-
cution time of this addition can be reduced to O(logzk).
Obviously, a trade-off exists between execution time
and hardware complexity. This paper concentrates
only on some simple algorithms.

3.2. Multiplication of Binary Row-Coded Numbers

Using the representation illustrated in Fig. 5, we
define a parallel (matrix-constant) multiplication of
an image set of binary numbers and one single binary
number X - R,, and parallel (element—element) multi-
plication of two image sets of binary numbers X X R.

I. Matrix-Constant Multiplication X - R,

Consider an image X [e.g., Fig. 8(a)] comprising N%/
k numbers x,, i = 1,2, ... ,N?%/k, and a reference image
R, |e.g., Fig. 8(b)] comprising only one single k-bit
binary number r = [rge—1)r(k-2) . . . ]2 Theoutput of
the parallel multiplication is X - R, [Fig. 8(¢)]. To
realize it, we first consider the serial multiplication of
two binary numbers that is the sum of the shifted
versions of the multiplier or the multiplicand. Then,
by applying the corresponding parallel operations and
parallel shifting by a dilation @, we can implement this
parallel multiplication by the equation

YV oXxea, (23)

-]
(e, =1

X-R =

where the sum notation ¥~ refers to a sequence of
parallel additions and the parallel addition + is de-
fined in Subsec. 3.1.

The DOCIP takes ((k?) clock cycles for implement-
ing this matrix-constant multiplication. Its proce-
dure involves:
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S = Cly) =
01101 00000
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Fig. 7. Parallel addition of binary row-coded numbers (II): The
procedure for parallel addition X + R where X and R are shown in
Fig. 6,S(t5) =S = X + Rand C(¢;5) = ¢.

X7 bits
4P
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Fig. 8. Parallel (matrix-constant) multiplication of binary row-
coded numbers: (a) image X of operands; (b) image R. containing
only a single number; (c) output X - R,.

(1) Generating the term X & A~
The DOCIP-array requires at most { < k — 1 = O(k)
clock cycles, because

A—l=(A—I)I
zA'9A'e...0A}, 24)
i
XeA'=]. [(XeAheA'le. oA
Y-

The DOCIP-hypercube requires at most logyl <
loga(k — 1) = Oflogyk) clock cycles, because we can
rewrite [ as a binary number | = [a({iogat)) - - - A1)

and we have
Llewt] ‘”

120

A=

a RO
®...0A . (20

1
.2
e

Ao A




NeAl= (.. ”.\' ®A "nn‘ ® A"".xr‘-’ ]

®...@ A et

where |log.!] is the greatest integer less than or equal to

logal, and each dilation with A= can be implement-

ed in the DOCIP-hypercube in one single clock cycle.
The total time delay for generating all required X &

A7, 0 <! <k — 1, is bounded by O(k) for both the

DOCIP-array and the DOCIP-hypercube. Since
XA '=[X0A " Vea, (26)

we can generate the new term X @& A~! by simply
deriving it from the previous term X & A~V without
starting from the original X. The total generating
time is then dominated by the number of terms X &
A~'which is at most O(k).

(2) Implementing the summation

Y‘ Xo Al

IVr“,—l

The DOCIPs require at most k — 1 = O(k) parallel
additions to implement this summation, and each par-
allel addition requires at most & + 1 = O(k) iterations
(as shown in Subsec. 3.1). Since it takes O(k) time for
generating all the terms X & A~, the total execution
time of the DOCIPs for this matrix-constant multipli-
cation of k-bit binary numbers is O(k) X (k) + O(k) =
O(k?). From the exampleshowninFig.8,R.=/u A2
contains only a single number r = (0101), = 5, and the
DOCIP can implement this matrix-constant multipli-
cation X - R, as follows:

Assume start with X in Mi(= X & [).

(D M®A 2> Mi(=X® A

(2) Theinstructions of the parallel addition are per-
formed as shown in Subsec. 3.1:

M +M,—=out(=X-R,).

IIl.  Element—Element Multiplication X X R

Consider an image X (e.g., Fig. 9(a)] comprising N?/
k numbers x,,{ = 1,2,...,N%/k, and an image R [e.g.,
Fig. 9(b)] comprising N*/k numbers r;,i = 1,2, ... ,N?/
k. The output of the element-element parallel multi-
plication is X X R [Fig. 9(c)]. Because the multiplica-
tion of two binary numbers is the sum of the shifted
versions of the multiplier or the multiplicand, applying
the corresponding parallel operations, we can imple-
ment this parallel multiplication by the equation

k-1
XxKk= X(x @A) llRnMeA et A

=0

k-1 =
=NXea ' uRoMeA @I AT, (27)
{=n

where the mask M [Fig. 9(d)] is used to extract the
[th bit [where the Oth bit is least significant and the
{k ~ D1th bit is most significant]. The DOCIPs can
implement this element-element multiplication by the
procedure

r
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‘o ‘#
00 o1 00 o 900000
N H OIRENER
L .‘ nal bas
. . b s
‘ - jssssasi]
- -
1 1
) )
1 1
1 1
&) ey 13

Fig. 9. Parallel (element—element) multiplication of binary row-
coded numbers: (a) image X of operands; (b) image R of other
operands; (c) output X X R; (d) mask M; (e} image u, N A
(f) image (R n M) ® U*2) A,

(1) Generate X ® A~'andRu Mo A%

Using an argument similar to that in Subsec. [ above,
the DOCIP-array takes O(k) time and the DOCIP-
hypercube takes O(logyk) time.

(2) Generate RUM ® A~ RoMeA'® U" =1 g~
The DOCIP-array takes O(k) tlme because

k~{~1 k—i-1
U A7= UA”)
1=0 =0
1 1
= UA")@ UA")@
=0 =Q
k={-1

! 2 0, and each dilation by a term in parentheses
executes in one clock cycle.
The DOCIP-hypercube takes O(logzk) time, since

keim1 Llogok—1- nj[

1
U A") + (28)
=0 /,

U A7 =

1=0

U AT ] {29)
n=0 =0
wherek~{—1= [auogz(k - nh - au)a(o)]g, and again
each dilation by the term in parentheses executes in
one clock cycle.

It takes O(k) time for the DOCIP-array and O(logsk)
for the DOCIP-hypercube to generate the term

(Xe A ullRu(M®A™D] & U A7),
(3) Implementing the summation
k-1 =

> X@A"URUM@A U A,

l-ﬂ

The summation requires at most (k — 1) addition
operations, and each addition operation takes O(k)
time on the DOCIP system. We also require O(k) time
for the DOCIP-array and O(log:k) time for the DO-
CIP-hypercube to generate each operand of the addi-
tion. Thus, for this element-element multiplication
of k-bit binary numbers, the total computation time is
O(k?) for the DOCIP-array and O(k2log,k) for the DO-
CIP-hypercube.

Multiplication requires more than three memories.
This can be accommodated by either building more
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memory into the DOCIP machine or by swapping in-
termediate results into and out of an external memory.
In the latter case we assume the external memory can
be loaded and unloaded with one image in a single time
step. In Sec. 4, binary stack-coded arithmetic also
requires more than three memories; we make the same
assumptions on the use of an external memory.

For binary column-coded arithmetic, a number is
encoded in a part of a column of an image as in Fig. 10.
All the algorithms derived in this section can also be
applied to binary column-coded numbers except that
we replace the elementary image A-! by a different
elementary image B for shifting the carry-bit image or
borrow-bit image in the vertical direction.

4. Binary Stack-Coded Arithmetic

In this case, a number is encoded in a stack of k
image planes with the least significant bit in the first
plane, next least significant bit in the second plane, etc.
(Fig. 11). We assume all numbers including the re-
sults of arithmetic operations can be represented in k
bits, so that k images, each with N X N bits, contain N*
binary numbers. Here, we describe parallel addition
and multiplication by BIA expressions. Subtraction
is discussed in Appendix B.

4.1. Addition to Binary Stack-Coded Numbers

Using the representation illustrated in Fig. 11, we
consider the parallel addition of two sequences of im-
ages of binary numbers. Assume a sequence of images
X = [X@g-1,Xiz-2) . . . . X (03] [e-g., Fig. 12(a)] storing
N? binary numbers x;, { = 1,2, ...,N? and a sequence
of images R = [R- 1),R(k 2} - R(o)] {e.g., Fig. 12(b)]
storing N2 numbersr;, i = 1,2, . Then the out-
put of the parallel addmon 1s X+ R=S-=
1SenS-1)s - - - »S0)} as shown in Fig. 12(c). To realize
this addition using our three fundamental operations,
we implement an array of full adders as described by
the equations

(1) The least significant bit planes of sum bits and
carry bits are given by

Xy & Ry = Xy v Ry v Xy v Ry, (300

un =

Cn=Xmn Ry = X v R, (31}

(2) The recursive relations:

S, = '\'I(I AR,b6C,

N-bat
re————  jength

p—Mos( significant bt
k-bit
length Irifs e sffi[a a @ Al
— Least significart bit
N-bn
J INIe
.. l—r

fength
Fig. 10. Binary column-coded numbers.

f\(k‘l)

Xy

Xi-n

Fig. 11. Binary stack~coded numbers. x,(m) represents the mth

bit of the ith number in the image plane. X, represents the image

plane of least significant bits and X k-, represents the image plane
of most significant bits.

This algorithm can be implemented in the DOCIP
architecture by the program (DOCIP instructions):

Assume start with X g) stored in M, and R stored
inM. 2.

Calculate S¢g) and Cy):

(1) M, v My~ M, & out[=C,].
(2) M; u My~ M[= X, v Rl
(3) M, uM,uM,;—~ M= X, u Rgl
(4) M, u My~ out[= S)].
Calculate S(;) and C(y):
1) X4 — M,
(2) My uM;—~M)l=X,uC,l
@) My oM, =M= X, 0 Cl

=Xy o Ry o Cul o [X, n Ry, o Col v Xy m Ry Col v Xy~ Ry n (‘(;;]
= |X(,, vl o Clu] [ Xy o R, v ('m] ‘J [Xm v Rm U (;m] v [}"«;| ; R;.; Jé(;.], (32)
Con=[X,0 le v l)‘m o Cpl (R w Oyl

= [X(n ~ Rnll 4 [Xm v (‘ml - IRm - Cm]-

where! =0,1,2,... k ~ 1.
(3) The final solution is

X+R=8=[S0S0 1 - Sl (344

where S(k; = (‘(h) because XU” = R“” = .
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@ M, oM, sMI=X, a0,
() R, =M.
6) M, oM, =M,
(1) M, u M, - M,
(8) M, u M, ~outj=5,,],
9 X, M,
(1) R, * M.,
(1) M, oM, - M,
(a2 ¢, =M,
(13) M, o M, =M,
(14 M,o M, =M,
asy X, -- M,
(16) M, u M, - M,
A7 Myo M, - M, & out|= Cpy)l.

Calculate S\s to Six-1y and Cy to Cyy:

Use the same instructions for calculating S(;; and
C(2) except that Xy, and R(;, {and S(;) and C2)] are
replaced by X,y and R, [and S and C41y] in each
iteration, and in the beginning of an iteration the mem-
ory Msstores Cy;) instead of C(y), i = 2,3, ... k.

The complete execution of this operation in the DO-
CIP requires t(k) < 17(k — 1) + 4 = 17Tk — 13 = O(k)
clock cycles. Additional parallelism could be extract-
ed to further reduce the execution time by utilizing

carry-lookahead techniques or by optimizing the
above program.

4.2. Multiplication of Binary Stack-Coded Numbers

Let the result of the parallel multiplication be X X R
=M= [M(zk-]),M(gk_zj, . e ,M(o)] [e.g., Fig. 12(8)].
Since binary multiplication is equivalent to the addi-
tion of shifted versions of the multiplicand, applying
the corresponding parallel operations, we can imple-
ment the parallel multiplication by the equations

P = [O‘Q o 0X gy o R X 0 Ry X Rm;:| '
N i’

= [0,(). X R X e O R X 0 RL00,

k-
ko

XxR=M=Npo-pogphg gpn

e

wherei = 0,1,...,k — 1, and the addition + is defined
in Subsec. 4.1. Since this parallel multiplication re-
quires at most k& — 1 additions, each addition takes
()(k) time for the DOCIP, and each P! can be generat-
ed in (k) time, the total execution time is O(k?)

5. Symbolic Substitutidn and Binary Symbol-Coded
Arithmetic

Svmbolic substitution was first considered as a
means of utilizing the parallelism of optics by Huang.!”

Fig. 12. Parallel arithmetic with binary stack-coded numbers:
(a) sequence of images X = [X3.Xw. XX w)]; (b) sequence of
images R = [Reny, R0 R Ry (¢) sum X + R =
1Si61.8:.802,.801.8wm]; (d) difference D = X — R =
lnq:n'Dr_n.D|n.l)(mll (e) producl M=XXR= [M('H-lexl‘- .- .Munl-

Recently, the use of symbolic substitution as a basis for
digital optical computing has been reported in Refs.
17-19 and 25-32. Special symbolic substitution rules
can be applied to perform arithmetic operations and
simulate a Turing machine.!® Symbolic substitution
demonstrates the ability to solve any computable
problem and performs many operations. Here we for-
malize symbolic substitution by BIA algebraic sym-
bols, demonstrate that symbolic substitution rules are
particular BIA image transformations, and give the
BIA formal notations of binary symbol-coded (sym-
bolic substitution) arithmetic.

5.1. BIA Representation of Symbolic Substitution

In this subsection we give the BIA equation for sym-
bolic substitution and show how it can be implemented
on the DOCIP machine. A symbolic substitution rule
involves two steps: (1) recognizing the locations of a
certain search-pattern within the 2-D binary input
data, and (2) substituting a replacement-pattern wher-

(35)

.0.] < {36)

[RPA]

ever the search-pattern is recognized. We derive it by
BIA in the following steps (illustrated in Fig. 13):

1. BIA Notations for Symbolic Substitution

2-1) binary input data = image (bit plane) X.

Symbol to be recognized (search-pattern) = refer-
ence image (or image pairs) K.

Svmbol to be replaced (replacement-pattern) = ret-
erence image Q.
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Fig. 13.

2. Svmbolic Substitution Rule

Step 1, recognition of the search-pattern:

(a) Foreground recognizer: the locations of a cer-
tain spatial search-pattern R, (defined by its fore-
ground) within the foreground of the 2-D input data X
can be recognized by the erosion operation of X and R;:

XoR =Xek,. (38)

(b) Background recognizer: the locations of a cer-
tain spatial search-pattern R, within the background
of the 2-D input data X can be recognized by the
erosion of X and R

XoR,=XeR, (39

(c) Full recognizer: by combining the two above
steps, the locations of a certain spatial search-pattern
R = (R,,R2) (R, defines the foreground, and R. defines
the background) within the 2-D input data X can be
recognized by the hit or miss transform of X and R:

XOR=(XOR)n(XOR)=(X®R) U (XOR). (#0)

Step 2, substitution of the replacement-pattern:

Substituter: a new replacement-pattern ¢ can be
substituted for R wherever the search-pattern R is
recognized by the dilation of X ® R by @.

Synthesis:

A complete symbolic substitution rule is implement -
ed by the hit or miss transform of X by R followed by
the dilation by @:

(XoReQ@=l{XoR)ni{XOR)®(
=(XeR) . (X®eR)®Q 41

Optional masking:

An optional mask M can be used for controlling the
block search region. A symbolic substitution rule can
he modified as

(XOR M e Q. (42)

By proper choice of M, the search can be made in
overlapping, disjoint or noncontiguous blocks.
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Fig. 14, Svmbolic substitution system with p symbolic substitution

rules.

3. Symbolic Substitution System (Fig. 14)

To work with more than one rule (say p substitution
rules) for practical applications, a symbolic substitu-
tion processor produces several copies of the input X,
provides p different recognizer-substituter units, and
then combines the outputs of various units to form a
new output. Thus, a symbolic substitution system is
implemented by

L”J lx@R(ll' @ Q(l" (4:”
=1

where R and QWY = 1,2,...,p, are the reference
image pairs and replacement patterns in the ith sym-
bolic substitution rule. This, then, is the BIA formula
for general symbolic substitution.

Hence, a general mathematical formalism of sym-
bolic substitution has been developed. For a local
search-pattern and replacement-pattern (i.e., R},R»,@
C Narray or Niypercube), the DOCIP-array or DOCIP-
hypercube can implement a symbolic substitution rule
in four (or five with the optional mask) steps:

Assume start with X in M,.

() MieR, —~ M,
2) M@R, - M,
(3) MyuM,-+M,
4) My®Q—outl=(X®R & Q]

Let the pixels used in the substitution rule(s) of a
symbolic substitution processor be the neighborhood,
N, of the processor. We see from the above steps that
the DOCIP can simulate the symbolic substitution
processor in constant time if the two machines have the
same neighborhood. If N is not a subset of the DO-
CIP neighborhood, the simulation will take longer. In
either case, it is not presently known how many steps it
takes the symbclic substitution processor to simulate
the DOCIP.

5.2. Binary Symbol-Coded (Symbolic Substitution)
Arithmetic

A bit in a binary number is encoded symbolically as
pixels of an image (Fig. 15). In this subsection. we
primarily concentrate on single-pixel coding: a logic
value (0 or 1) is represented by a single pixel (dark or
bright) [Fig. 15(a)], as in the binary row and stack-
coded number representations, but the operands of




|
¢ 0

] ] (W |
® & Eaa W
Zero Ore Zero Ore

(b) (e)

Fig. 15, Bit encoded as a symbol:  (a) single-pixel coding of zero
and one (a bit is a pixel); (b) two-pixel coding of zero and one (a bit is
encoded as two pixels) (adapted from Refs. 18 and 19); (¢} six-pixel
coding of zero and one (a bit with value zero or one is encoded as six

pixels) {adapted from Ref. 31).

binarv numbers x; and r; are stored in the same input
image X as shown in Fig. 16(a). The expected output
images of symbolic substitution for binary addition
and binaryv subtraction are shown in Figs. 16(b) and
(¢). To achieve these desired operations, the symbols
associated with the operands are recognized and then
replaced by new symbols associated with the results of
the operation. Systems for implementing binary ad-
dition and subtraction are formalized and illustrated
as examples of binary symbol-coded arithmetic below.

5.2.1. Addition of Binary Symbol-Coded Numbers

This parallel binary addition (Fig. 17) can be imple-
mented with four symbolic substitution rules {Fig.
17(a)]).1"1® Inthe case of single-pixel coding, as we will
show, Rule 1 is not necessary. The symbolic substitu-
tion system for single-pixel coding can be realized as

Yt = X, (44)
4

Yt )= UYU)@RY » Mie Q. (45)
=1

where Y(ty, ) istheresult,j = 0,1,2,... k + 1,kisword
size (i.e., the number of bits in an operand); R' =
[RY,RY'] and Q" are shown in Fig. 17¢b) and repre-
sented as

R = RP=UL B, QU=
2 RP=1, RP =8, Q%=1
Y kY =8 R =1 Q%=1
@ R =l B R =5, @V =a'B

Here the null image & and the elementary images are
as defined in Subsec. 2.1; the mask M [Fig. 17(c)], used
for controlling the block search region, is the image
corresponding to the coordinates of the origins (lower-
left pixels) of the input symbols in the input image X.
An example is given in Fig. 17(d). Note that Q'Y =
implies

YU R o M@ QY = o, (464
so that

L9-T)
lengin
X,
[ N « =
X .
r s
.
.
.
-]
(a)
000 00 ! X - 1.
X+ 0. . e 00000 .« .
36590 X.- 7,
X.el . 20000
. -
- a
. -
(b) (c)

Fig. 16. Binary symbol-coding (symbolic substitution) binary
arithmetic): (a) input image X contains the operands x, and r,;
(b) eutput of parallell addition; (c) output of parallel subtraction.
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Fig. 17. Parallel addition of binary symbol-coded numbers:

(a) four symbolic substitution rules for addition; (b) reference image

pairs R and reference images (2 / = 1,2,3,4, used for addition; ¢**

is a null image, Rule 1 is not needed for this single-pixel coding,

(c) mask M; (d) example of parallel addition of binary symbol-coded
numbers.
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Fig. 18. Symbolic substitution binary addition with two-pixel cod-
ing: (a) reference image pairs k' and reference images Q'J =
1,2,34, used for addition (with two-pixel coding) (adapted from

Refs. 18 and 19); (b) mask A,

Y, )= UL HYE) @OR ~ Mo Q"
= YU @R S Mo QY

= UL HYUD @R U YU @R~ Mo QU
“n

Thus, for single-pixel coding of symbolic substitution,
we can reduce the four rules of binary addition to only
three rules. However, this reduction of complexity
cannot be applied to two-pixel (i.e., dual-rail) or six-
pixel coding.

When implemented on the DOCIP, this addition
requires at most & + 1 iterations, each iteration requir-
ing two union operations of three results of symbolic
substitution rules, and each rule is realized within five
steps as shown in Subsec. 5.1. Thus, the total execu-
tion time in the DOCIP is

HR) S (3X 5+ 24k +1) = 1Tk + 1) = Ok).

When using two or six pixels to represent a logic value
[Figs. 15(b) and (c)}, we can formalize symbolic substi-
tution addition as follows.

With two-pixel coding [Fig. 15(b)],"**' we canimple-
ment a full recognition with only a background recog-
nizer {or foreground recognizer):

Yie,, ) = gL HYE) R - M@ Q!
=L AIYU) CORYL YU SRV Mie Q!
=LY O RS o M e @, (48)
where j = 0,1.2,....k; R = [R{"RY'] and @ are

shown in Fig. 18(a) and represented by elementary
images as

m RV=1.8, RY=8 B, Q"=1.,A'R,

@ R =0 8, R =1 R =R AR,
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Fig. 19.  Symbolic substitution binary addition with encoding a bit
as six pixels (adapted from Ref. 31).

3 RV =TuB, RM=UL B, QY=BuA 'K,
(4) RP=BuB, RM=10B, Q'=1CA'H,
and the mask M is shown in Fig. 18(b). Since
(Y(e) @ RV o [Y(,) @ RY] = [Yi,) @ R
=[Y(t,) @ R, (49)
for the two-pixel coding, R"' can be represented by
only its foreground R{" or background R}’. For imple-
mentation on the DOCIP, this algorithm requires four
rule~, and each rule involves two dilations and one
union or intersection. Because they may be not in-
cluded in Naray 0f Npypercube, €ach dilation of RY' or Q!
is implemented by 2-4 steps for the DOCIP-array8and
1-2 steps for the DOCIP-hypercube8. The total exe-
cution time is bounded by 28(% + 1) for the DOCIP-
array8 and 18(k + 1) for the DOCIP-hypercube8.
Moreover, it requires more difficult two-pixel coding
and doubles the device area.
With six-pixel coding [Fig. 15(c)],*! the mask M is
not needed and

4
Yit,, = UY)OR @ Q" (50)
=1

wherej =0,1,2, ... ,k,k is the word size; R = [R}",RY']
and Q' are shown in Fig. 19 and are represented as

(1) R =10 AB U B U AR,
RM"=BuUB'UvAUAB UL, APBY,
QY =ATKB VATE LI L AB,

(2) RY = (UL, BYu A u A
RZ2 =10 B UL, ABY © (UL, AR,
QV=A"B VATB VB U A

(3 RY =10 B UL, ABY.

RV = (U2, BY G AU A C UL, AR,
@AY =ATBLUATB OB U A

(O RY=BuBUuAUAK.

R =10 B UABUAB (UL, A,
QU=A7B AR UG AR

The six-pixel coding removes the need for the mask M,
but requires more difficult encoding, more difficult
implementation of the hit or miss transform by R*' and




dilation by Q", and six times the hardware area. Ad-
dition on the DOCIP-array or DOCIP-hypercube us-
ing six-pixel coding takes much more time (a factor of
more than 10 times) than the time required for single-
pixel coding or two-pixel coding.

6. Complexity of Parallet Optical Binary Arithmetic

We have shown that BIA offers a general tool for
mapping serial binary arithmetic into different forms
of parallel binary arithmetic (including binary row-
coding, binary stack-coding, and three coding tech-
niques for symbolic substitution arithmetic) in a pre-
cise and compact way The complexity of parallel
addition and subtraction of two N X N arrays of binary
numbers (each number with k-bit length) for these
different number representations are compared in Ta-
bles I and II. Binary row-coded arithmetic requires
the smallest number O of fundamental operations.
Binary stack-coded arithmetic requires the lowest
number of processing elements (or cells) P and the

Tabie |. Complexity of Parallel Optical Binary Addition of Two N X N
Arrays of k-Bit Binary Numbers; Each Parallel Fundamental Operation

Corresponds to PP ing ts E sting in Paraliel
Symbotc Symbolic
Number Brnary Binary Sbsttution | Sopsutation
Hepresentation Row-coding Stack coding (single-pixel {two-pixel
coding) coding)
No of Déations k 0 9(hel) 8(ke1}
(or Erosions)
No. ot Unons ) 16k 12 15(ke1} 16(ke1)
{or Intersections)
No of Thed 20013 12(ke 1) 1651‘.\
Complements "2k 7k *3(ke1) *afkat
Total No of Paraliel
o:undlmor:r:l (o] 12ke7 36k 25 36(ke 1) S0tk
ratons The5 2317 “27(k+1) 28(k+1)
% of
Processing P kN2 N 2k N AN
Elements
Totat No of (12K TIKN? (36%-25)N 76h{k+ 1IN 160k (k» 1)N?
lComputations  OxP Tk SIRN? “(22k- 18N “Sdk(ke 1IN | *112K(ke VN7
oociP T 18(ke 1) or
171 17(ke1)
Execution Time Shed 3 * 2B(he 1}
(ke 1IN?
PeT (She3kN? TEPRETCIN REVRRI R G 2&&1’&,"'

* mdicates the number of operations when erosion and intersaction are also allowed

Table H. Compiexity of Parallel Optical Binary Subtraction of Two N X N
Arrays of k-Bit Binary Numbers

Symbolic Symbolc
Number Binary Buary Substitution Substitution
Representation Row coding Stack coding (singie pixel {lwo pxel
coding) coding}
No of Drtatons ] 0 Biket) Bik ot}
ter Erosi0ns)
No of Unions 4kl 16k 12 10(ka 1} 16(ke1)
{07 Intersections)
No of 6ked 2218 8tk 1) 16(ke 1)
Complements ‘I ‘e d K1) '451(.1)
Tota! No of Parallet
ine? 4 ) 24(ke1) 40(ke 1)
Fundamental O . . . .
Operations BreS I 26 18(ke 1) 28ik+ 1)
No of
Pincassing [ WM N RN an N
£ iemants
Torai No of (11Re 7N (43 NN 48Kk 1INY 160K (k¢ 1IN
Computatons  O*F *(Bh o H)kN SNk 260 | IRk N | 112K (ke 1IN?
DOCIP 18tke 1) Of
1 20k 17 Tiket
¥ racution Tonw awat et 28(ka 1)
| Tok(ke 1IN
Pt (Ake N (206 171N 22kika 1IN ';"?‘H;""‘N,"’

*nde ates tha nambar of oparations whan e165:10n and intarsechion are also allowaed

smallest overall O X I’ complexity {assume each paral-
lel fundamental operation corresponds to P processing
elements executing in parallel). For the normal case
in which the word size is larger than one and much
smaller than the image size (1 < k « N), binary row-
coded arithmetic can be implemented in the DOCIP
with the fastest computation speed (assume the DO-
CIP can input all operands in an image at a time). For
implementation on the DOCIPs, the complexity of
binary symbol-coded (symbolic substitution) arithme-
tic is in all cases higher than that of binary row-coded
and binary stack-coded arithmetic. For implement-
ing symbolic substitution algorithms on the DOCIPs,
the single-pixel coding is superior to the other symbol
coding techniques.

7. Conclusion

Optical computers can operate on 2-D planes of data
in parallel. Boolean logic equations do not provide a
complete description of such parallel operations for
binary arithmetic. An optical system that operates on
planes of data should employ an inherently parallel
mathematical description for its arithmetic. In this
paper we use binary image algebra (BIA) to develop
parallel numerical computation algorithms, and to de-
scribe the execution of these algorithms on a digital
optical cellular image processor (DOCIP) architecture.

BIA is demonstrated to be a general technique for
developing and formulating parallel numerical and
non-numerical computation algorithms for digital op-
tical computers. The DOCIP is a simple optical archi-
tecture for effectively implementing BIA. Symbolic
substitution is a subset of BIA and can be formalized in
compact BIA expressions. Three different techniques
for parallel optical binary arithmetic, based on binary
row-coding, binary stack-coding, and binary symbol-
coding (symbolic substitution), are illustrated for im-
plementation on the DOCIP. Binary row-coding
arithmetic has fast DOCIP execution and binary
stack-coding arithmetic requires the lowest number of
computations O X P. In summary, BIA and the DO-
CIP represent a simple yet powerful parallel digital
optical algorithmic and architectural technique for
both numerical and non-numerical applications.
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Appendix A: Subtraction of Binary Row-Coded Numbers

Let the output of the parallel subtractionbe D = X —
R [e.g., Figs. 20(a)-(c)}. To realize it, we first consider
the serial binary subtraction of 2 binary numbers d; =
x, = r,. The procedure in the least significant bits x,(,,
and r,, of binary subtraction generates a difference
bit d,., and a borrow bit b,,. The Boolean logic
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equations for subtracting the two least significant bits
(half-subtractor) are

difference bit: s, = x,.,, NOR .\

borrow bit: ¢, = x,,AND .

Now, applying the corresponding parallel operations
and shifting the set of borrow bits by a dilation &, we
can implement the parallel subtraction as follows:

(1) Define the initial states of images of difference
bits and borrow bits (called difference-bit image and
borrow-bit image) at time ¢, as

D) = X. B, =R (51)

(2) The recursive relation between the states of the
difference-bit image and borrow-bit image at two adja-
cent time intervals is

Dt ) =Dy s Bie) = Die) ¢ Buy o DY o Ble), (52)
Bit,, ) =Di) a Bu)l@ A = Dit) v Bie) ® A7, (53)

where i = 0,1,2,... .,k + 1, and the elementary image
A-!is used to shift the borrow-bit image one bit to the
left for the next iteration.

(3) After a maximum of k + 1 iterations, the differ-
ence-bit image is the result and the borrow-bit image
becomes the null image @:

Dit,,)=X-R.

This procedure is illustrated in Fig. 20(d). The result
of parallel subtraction of binary numbers with a maxi-
mum &-bit word size is obtained after & + 1 iterations.
The DOCIP architecture can realize this by the follow-
ing program (instructions):

Assume start with X in M{= D(ty)} and R in M,[=
B(tg)].

First to kth iterations:

(1) M, v M, -~ M= Dit) v Bit)|,

Blty,)) = . (54)

(2) M, o M, -~ M\|= D(t)) u B(t)],
(3) My o M, -» Mi[= Dit,, )],
(4) M, ® A" = M,[= Bit, )]

wherei =0,1,2,... .k~ 1.
(k + Dith iteration:
() M, oM, M= Dy o Bieyl,
) M, UM, - M= D) v Bt
() M, oM, -Ml=Du,,)=X-R|.
The total number of clock cycles in the DOCIP to

complete this subtraction process is t(k) £ 4k + 3 =
(k).

Appendix B: Subtraction of Binary Stack-Coded
Numbers

Let the result of the parallel subtractionbe X — R =
D= [Dy-1,Dy-2, ... .Duwnl leg. Fig. 12(d)]. Toreal-
ize it using the three fundamental operations, we con-
sider a serial full-subtractor. Applying the corre-
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b ity

|
CRERE 00010 G100

{ay thi fet
01001 00000,
Dty = . Bit) =

St st

Dity) = B(t)) =

)
Fig. 20. Parallel subtraction of binary row-coded numbers:

(a) image X of operands; (b) image R of other operands; (¢) ouput
X — R, (d) procedure for parallel subtraction X — R.

sponding parallel operations, we can implement this
parallel subtraction by the equations

(1) The least significant bit planes of difference bits
and borrow bits:

Dy, = X & Ry = Xy U Rypy U Rigy U X (55}
By =X 0 Ry = Xy v Ry (56)
(2) The recursive relations:

Dy =Xy 0 Ry n Byl v Xy o R, n By
v [X(H n R-(; n B_U_)] v [X(li n R(ll al Bm]

=[XauRya lﬂl o X v ﬁ(-—i v B,
VX uRyuByluv Xy uR,uBL 67

By =[Xyn Ry aBylo [:X(;, AR, n B,
v [X o Ry n By ‘iI'\mrl ,_e‘,',’,i,,B“']
= [Xy v Ry v Byl v X, 0 Rm v Bl
Xy uRyuB) o[ Xy uR,uB,l. B8
wherei =0,1,2,... k- 1.
(3) The final solution:
XN=R=D=[Dy_Di_sp .. Dol (5%
This algorithm can be implemented in the DOCIP
architecture by the program (instructions):

Assume start with X(g) in M) and Ry, in M.
Calculate Do, and B(y):

() MyuM, ~M,;&out{= B, ]
(2) My u My =M [= X, v Ral.
() My u M, =out]=D,l

Calculate D, and By,




M X, - M,

() M, M, - M,
@ M, UM, -M,
) Ry, =M,

(5) My o My = M.,
©) M, uM, M,
(D) My o M, = M.
8 R, - M,

O M, oM, - M,
(10) M, v My + My,
uan X, M,
(12 M, o M, =M,
(3 B, ~ M,

U8 M, oM, - M,

(15) M, o M, —=out|=D,]

(16) X,;, - M,

A7) M, o M, - M,

(18) R,,, = M,,

(19) M, u M, — M,,

(20) M, u M, =~ M, & out = B,.

Calculate D 2) to D~y and By to Buy:

Use the same instructions for calculating D, and
Bz except that Xy and R {and Dy;) and B)] are
replaced by X,y and R, [and Dy;, and B;+) in each
iteration, and in the beginning of an iteration the mem-
ory M, stores By, instead of Bj,.i = 2,3... . ,k.

Therefore, the total execution time in the DOCIP to
complete this parallel subtractionis ¢t (k) < 20(k — 1) +
3 =20k — 17 = O(k).

Appendix C. Subtraction of Binary Symbol-Coded
Numbers

Similar to addition, we gradually use 4 symbolic
substitution rules [Fig. 21(a}}, but Rules 1 and 4 are not
necessary for single-pixel coding. The symbolic sub-
stitution system using single-pixel coding for binary
subtraction can be realized as

Yit,) = X, 60
Yie,, )= ol YU ORY) ~ Mo QY
ol Yy @ RV U (Y1) @ R ~ M@
GV @ RV G [Y(E) @ RY] o M@ @, (61)

where Y(t,.) is the result of the subtraction, j =
0,1,2,... .k, kis word size (i.e., the number of bits in an
operand); R = [R{",RY'] and Q" are shown in Fig.
21(b) and represented as

(1) If',“ = ¢, Ri." = u,',,, B, Q"' =,

10100 Rug 1 % —e 2

iogiy uel 3%,
Differance bus ~ 0013+
Borrow Dits Q0011
Diterence dis ~ 90001
Borrow bits 001t

Oifterence dDits 3000 !
300

Rule 2 ? —
Rule 3 ) — o'
Rue 4 | —o Do

Borrow tits
(a)
Qnga Qngin
Rule 1 = —_— .. Rute 2 [5 — DG

R =0 BY = Uy B~ oM =» ARYV=8 R =1 QM =luattett

D Rule 4 — .
Ruie 3. D —_— % .

A =1 R =87 Q= R =l 8 R =0 Qas

(b)

k=5 DAS {c)

-~

07T 1001

001 . » 7000 « e

01001 0010

(AR QQ0o0
(9

Fig. 21. Parallel subtraction of binary symbol-coded numbers:
(a) four symbolic substitution rules for subtraction; (b) reference
image pairs R and reference images @/ = 1,2,3,4, used for sub-
traction; because Q') and @'¥ are null images, Rules 1 and 4 are not
needed for single-pixel coding; (c) mask M; (d) example of parallel
subtraction of binary svmbol-coded numbers.

(2) R®=B"', RP=1, Q?=10A"'B"!
B RM=1, R =B, V=1,
(4) R(lﬂ = les() B, Ry‘ =6, Q¥ =¢.

where the null image ¢ and the elementary images are
as defined in Subsec. 2.1; and the mask M [Fig. 21(c)} is
a shifting of the mask for binary addition. Because
Q1 and @ are null images, and the dilation of a null
image is a null image, Rules 1 and 4 are not needed for
simple intensity coding. Figure 21(d) gives an exam-
ple. The execution time for the DOCIP is t(k) <
11(k + 1) = O(k).

Similar to binary addition, we can drvelop symbolic
substitution binary subtraction algorithms with BIA
representations for coding a symbol with two or six
pixels. However, four symbolic substitution rules are
still required beccuse @' and @'*' will not be equal to
the null image. The DOCIPs take approximately the
same execution time for binary subtraction using two-
pixel or six-pixel coding as for binary addition.
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A Cellular Hypercube Architecture for Image Processing t
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Abstract

In this paper we present a two-dimensional cellular hypercube architecture for image processing that combines
features of the conventional hypercube and cellular logic architectures for 2-D computation celis. A unified theory
of parallel binary image processing, binary image algebra (BIA), serves as a software tool for designing parallel
image processing algorithms. To match the hardware to the software, we characterize the cellular processors
using the same algebraic structure as BIA. The two-dimensional cellular hypercube image processor is a cellular
SIMD machine with N2 cells and has a simple overall organization, low cell complexity and fast processing ability.
An optical cellular hypercube implementation of BIA is proposed which offers parallel input/output and global
interconnection capabilities which are difficult to do in planar VLSI technology.

. Introduction

Image processing and image analysis tasks have large data processing requiremnents and inherent parallelism.
Parallel cellular logic architectures are generally considered appropriate models for parallel image processing. The
cellular logic computer was first inspired by the writings of von Neumann [1][2] on cellular automata. The first
highly parallel cellular image processor was suggested by Unger [3][4]. Unger proposed and, later, simulated a
two-dimensional array of modules ( or processing elements or cells) as a natural spatial computer architecture for
image processing and recognition. In this approach, each computational cell is responsible for one pixel (or one
element of an image) with its neighboring pixels. A cellular logic (or neighboring logic) operation is then referred
to as a transfo.m of an array of data X(t,j) into a new array of data X’(i, j) where each element in the new
array has a value determined only by the corresponding element in the original array along with the values of its
neighbors. Fig. 1 shows a typical conventional nearest-neighbor connected cellular logic architecture. Some review
of cellular image processors can be found in Ref. [5]-[8].

—— Connections in the 4-connected ocellular array
==} Connections in the 8-connected celiular array

l l l I (0000) g—(0001) (0010} (0011)
1 I ] | (0100) (0101) (0110) (011%)
| | 1 1 (1000) (1001) (1010) (1011)
— - -
1 Y | | ] L l
(1100) f—4(1101) {1110) (1111)
m—— Sa— s }—

' r I I Figure 2: A convgntional hypercube (4-cube) laid out
Figure 1: A nearest-neighbor connected cellular logic in two dimensional space. Its interconnections have
architecture. Each retangular box represents a com- no spatial invariance.
putation cell.

One important problem in cellular image processing is that the nearest-neighbor connected cellular image pro-
cessors have poor communication capabilities and no unified systematic theory for both parallel image processing
algorithms and architectures. Section 2 suggests a cellular hypercube architecture to improve the communication
capabilities of cellular logic computers. Section 3 summarizes a binary image algebra (BIA) to serve as a unified
binary image processing theory for both algorithms and architectures. Section 4 discusses a digital optical cellular
hypercube image processor, DOCIP-hypercube, for efficiently implementing BIA.

°1Supported by the Air Force Office of Scientific Research under grant AFOSR-84-0181 and by an IBM graduate fellowship.

*From Applications of Digital Image Processing X, Proc. of SPIE-The International Society for Optical Engineering.
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2. Cellular Hypercube Architecture

Conventional nearest-neighbor connected cellular arrays have poor communication capabilities; their perfor- .
mance is primarily limited by their O(1) interconnectivity. To improve this while preserving a reasonable number |
of interconnections, ideally a conventional hypercube inc:zases the interconnectivity to O(loga M) for M process }
ing elements (PEs). (We refer to a PE in a cellular computer as a cell which usually has no address and index
registers.) A conventional SIMD hypercube computer is comprised of A/ = 2' PEs, where I is a non-negative
integer. All the PEs are synchronized and operated under the control of a single instruction stream. They are
indexed 0 through M — 1 and the p** PE is referred - PE(p) for p € [0, M — 1]. A hypercube is denoted as a
l-cube where | = log; M represents the number of directly connected PEs. Let p;_ypi—a...pp be the binary repre-
sentation of p, and let p(*) be the number whose binary representation is Pi-1-.-Pb41P6Ps—1...po, Where Py is the
complement of p, and 0 < b < I In the hypercube model, PE(p) is connected to those PE(p®) for 0 <b<l(ie
a direct connection exists only between processors whose binary indices differ by one bit position), and data can
be transmitted from one PE to another in one step only via this interconnection pattern [9]. The worst case for
an inter-PE communication requires logs M routes.

~— Connections in the 4-directed cellular hypercube
=) Connections in the 8-directed celiular hypercube
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| Y
ses | 11.00 (-10.00) {-01,00) =1 (00.00) (+01,00) (+10.00) (¢11,00) ] #ee

S————

(-11,-01}) {-10.-01) {-01.-01) ( 00.-01) {010V (.1‘0.}1 (+11,-01)

B (BRI (-10,-10) -01.- M) (00.-10} (+01.-10) {+10.-10) (db\ou
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!

Figure 3: A two-dimensional cellular hypercube — DOCIP-hypercube. Each cell is interconnected with other cells having
a relative one bit difference in coordinate label in positive or negative r and y directions to achieve a spatially symmetric
and invariant interconnection pattern. Only connections from the central cell are shown; all cells are connected identically
¢ the resulting interconnections are space invariant.

However, when a conventional hypercube is laid out in two-dimensional space (e.g. Fig. 2 gives a 4-cube), its
interconnection patterns are not space invariant; such spatial invariance is desirable for image processing and for
simple hardware implementation. To include this, we increase the interconnections to make a two dimensional
cellular hypercube (Fig. 3). The cellular hypercube introduces a symmetrical positive and negative index so that
each cell is connected with cells having a relative one bit difference in coordinate label in positive or negative z and
y directions; the numerical difference of addresses of connected cells is nonzero in at most 1 bit. A two-dimensional
SIMD cellular hypercube computer consists of M = N2 = (2n — 1)? cells and -7 = 2%, k is a non-negative integer.
They are indexed (—n + 1,~n + 1) through (n — 1,n — 1) and the (g,r)** cell is refered as CELL(q,r) for
¢,r € [-n+1,n—1]. In the 4-directed cellular hypercube (cellular hypercubed) model, CELL(q,r) is connected
to those CELL(g + 2%,r) and CELL(g,r = 29) for 0 < d < k; and in the 8-directed cellular hypercube (cellular
hypercube8) model, CELL(q, r) is connected to those CELL(q+2¢,r), CELL(q,r+2¢) and CELL(q£2%,r129)
for 0 < d < k. Data can be transmitted from one cell to another in one step only via this interconnection pattern,
although it occurs in parallel for each pixel. For N2 = (2n—1)2 cells, the worst case for an inter-cell communication
requires 2log,n or 4logyn (they are O(logz N)) routes for the 8-directed or 4-directed cellular hypercube repectively. .

This cellular hypercube architecture requires a 3-D global interconnection mechanism which is difficult to
implement on a planar VLSI chip {7])(10][11]. However, in principle, the 3-D interconnection mechanism is realizable
by digital optical systems, because the general architectural structure of a digital optical computer is inherently
3-dimensional {12){13]. Thus, a digital optical cellular image processor based on the cellular hypercube architecture

]




(DOCIP-hypercube) is a possible implementation.

To develop 8 two-dimensional image processor, we face the problem that image processing has no standard
unified theory, and e0 many image processing algorithms and architectures exist in a state of chaos. Thus, we
first discuss a simple unified consistent theory of image processing (covering both algorithms and architectures) in

section 3, and then consider its optical implementation on a digital optical cellular hypercube processor, DOCIP-
hypercube, in section 4.

3. Binary Image Algebra

An algebraic structure provides a theoretical framework of image processing because algebra is a foundation of
mathematics, computer language and automata theories. During the past few years, numerous papers have used

an algebraic approach to aid in image processing [14]-[19]. Here, a binary image algebra (BIA) is summarized to
serve as the software theory of cellular image processors.

3.1 Basic Definitions

In general, a binary digital image is defined as a function f mapping each grid point (z,y) of the picture on an
orthogonal coordinate system onto the set composed of 1 (white, i.e. image point) and 0 (black, i.e. background
point). However, to have a better compact parallel representing form of a binary image, we can use the coordinates
of image points (‘1’s) to specify an image. In this paper, an image is treated as the set of coordinates of image
points (set of pixels that have value 1). We begin the description of BIA by defining our artificial universe:

Definstion 8.1 The Universal Image: The universal image is a set W = {(z,y) | = € Z,,y € Z,), where
Zn = {0,£1,£2, ..., 2n} and n is a positive integer. Thus, all images are defined in a (2rn + 1) x (2n + 1) array of
points.

Definstion 3.2 Image Space: The image space is the power set (the set of all subsets) of the universal image,
ie. §S= P(W).

Definstion 3.8 Image: A set X is an image if and only if X is an element of the image space S, i.e. X is a
subimage of the universal image W.

Definstion 3.4 Image Point: A point (z,y) is an image point of an image X if and only if (z,y) is an element
of the set X.

Definstion 3.5 Image Transformation: A transformation T is an image transformation if and only if T is a .
function mapping from the image space S to the image space S.

Definstion 3.6 Three Fundamental Operations

There are three fundamental operations:

1. Complement of an image X: X = {(z,y) | (z,y) € W A (z,y) € X}

2. Union of two images X and R: X UR = {(z,y) [ (z,y) € X V(z,y) € R}
3. Dilation of two images X and R:

X®R= { {(z1+z2, 41 +y2) €W | (z1,1) € X,(22,12) ER} (X #£S)A(R# ¢)
- ¢ otherwise

Remark: “€” means “belongs to”, “A” means “and”, “v” means “or”, and “¢” is the null image having no
image point. Note that X usually represents an input or data image and R is a reference image. We can define
other image operations as fundamental operations instead of these three operations. The reason for choosing these

three operations is because of their simplicity, simple software design and simple hardware implementation. Figure
4 gives an example of these fundamental operations.

000 0000000 T111 1t 0000000 ot1t11111
382?110 0000000 1100001 ob21110 0111111
0001110 0011100 1110001 0011110 0111111
0000110 0011100 1111001 0011110 0011111
0000010 0011100 1111101 0011110 0001111
0000000 0000000 1111114 0000000 0000111
0000000 0000000 11111114 0000000 0000000

nput x Reference R Complement X Unvion XuRk Dilation X @R
tmage tmage

Figure 4: An example of fundamental operations: complement ~, union U, and dilation &.

Definition 3.7 Elementary Images: There are 5 elementary images:
1. I = {(0,0)} — consisting of an image point at the origin




2. A= {(1,0)} — consisting of an image point right of the origin
3. A7! = {(~1,0)) — consisting of an image point left of the origin
4. B = {(0,1)} — consisting of an image point above the origin
5. B~} = {(0,—1)} consisting of an image point below the origin
In fact, these 5 elementary images could be reduced to 4 elementary images, because I = A% = A @ A-! = B° =
B¢ B-'.
3.2 Two Fundamental Principles

Two fundamental principles basically define the binary image algebra (BIA). Before stating these two principles,
we give some preliminary results. The proofs are omitted here for brevity (19].
I ifX=R

¢ otherwise

Lemma 1. (X@R)U(X@R)UuT= { VX,Re P(W).

Remark: I = {(0,0)} is an elementary image, R = {(~z,—y) | (z,y) € R} is a reflected reference image, and
“V" means “for all”.

Theorem 1. Any image transformation T : P(W) — P(W) can be expressed as

TX)=U {XeR)U(XaR)Ule Q)

where k < I, I is the cardinality (i.e. the number of elements) of P(W), and R; and Q; are the reference images
used to form any desired image transformation.

Remark: Ule R,=RiUR;U..UR;.
Theorem 2. Any image can be represented as
X = U(.‘J')ex A'B

where A'B) = A'®@ B/, A' = AGAD.0A = {(i,0)} (ifi = —k, iisa negative integer, then A~* =
N

AleAa! ®..0 A" = {(=k,0)}) and 4,B,A!,B-! are the elementary images defined in Definition 3.7.
Y

Principle 1. Fundamental Principle of Image Transformations
Any image transformation T can be implemented by using appropriate reference images R and the three
fundamental operations: 1. Complement X of an image X, 2. Union U of two images, 3. Dilation @
of two images.

Proof. 1t follows from Theorem 1.

Principle 1 solves almost any problem in binary image processing/analysis, especially in shape inspection, size
verification, and pattern recognition with shift, scaling and rotational invariance [19] [20]. However, in reality, how
can we build a computer that offers arbitrary and programmable reference images for dilations? Do we really need
a large memory to store many kinds of reference images? The answer is “no”. The second fundamental principle
suggests an economical way to accomplish this.

Principle 2. Fundamental Principle of Reference Images
Any reference image R can be generated from elementary images (1, A,A7', B, B~!) by using the three
fundamental operations.

Proof. 1t follows from Theorem 2.

Therefore, by the above principles, the algebraic structure of BIA can be defined as:

Definition of Binary Image Algebra (BIA)

Binary image algebra is an algebra with an image space S and a family F of finitary operations
including § elementary images, which are 0-ary operations, and 3 fundamental operations, which are
non 0-ary operations. Symbolically,

BIA = (P(W);®,U,”,1,4,A"!,B,B"1)
ie. S= P(W)and F = (&,U,”, 1, A,A°', B, B~Y).




Remark: For any integer k, a k-ary operation on S is defined to be a function f : S* — S. Thus, a unary (or
1-ary) operation on S is simply a function on S to S. A binary (or 2-ary) operation on S is a function on 5? to
S. For completeness, we define a nullary (or 0-ary) operation on S to be a particular element of S.

4. Implementation: DOCIP-hypercube

To map algorithms into architectures in a transparent way, we use an algebraic approach for describing a
cellular image processor first. Then we design the digital optical cellular image processors (DOCIPs) and their
optical implementation. The DOCIP-hypercube, a two-dimensional cellular hypercube, uses optical parallel global
interconnection capabilities and offers further improvements in speed and flexibility.

4.1 Algebraic Description N
Having defined cellular automata and the implementation requirements of BIA, we describe the DOCIP in an
algebraic way:
Definition of Cellular Automata

A cellular automaton is an algebra A = (S; F, N.) where S is the state space which is a set of states,
F is a family of transition functions, and N, is the neighborhood configuration.

Constraints of Implementing BIA:
1. § D P(W)
2. Fo{& v}
3. NNDIUAUA-1UBUB ! (or NoDAUA™'UBUB™)
where “O” means “contains”.
Thus, in terms of cellular automata, the DOCIPs have to satisfy the above constraints for realizing BIA. For

storing input images and temporary results in a more flexible way, the DOCIPs utilize three memory modules and
share the same algebraic structure (except the neighborhood configuration):

DOCIP = (P(W3);®,U, ", N.)
where N, can be one of the following 4 types:

1. DOCIP-array4: each cell connects with its four nearest neighbors and itself, i.e. Ngrraya =T UAU Aty
BuB-1.

2. DOCIP-array8: each cell connects with its eight nearest neighbors and itself, i.e. Narrays = Ui j=0,41 AB.

3. DOCIP-hypercube4: each cell connects with those cells in the 4 directions at distances 1,2,4,8, ..., 2* from
it, i.e. Nagpercudes = (Uizo 21,42, 22¢ AVUUizg1,22, 426 B*).

4. DOCIP-hypercube8: each cell connects with those cells in the 8 directions at distances 1,2,4,8, ...,2* from
it, i.e. Nhypcrcubea = UiJ:O,:tl,i? """ $2% A'B.

Among of these, DOCIP-hypercube4 is most preferred because its hardware requirement is simpler than

DOCIP-hypercube8 while they have the same order of performance. The DOCIP-array architectures are nearest-
neighbor connected but have poor global communication capabilities.
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Figure 5: A digital optical cellular image processor (DOCIP) architecture — one implementation of binary image algebra

(BIA). The DOCIP-array requires 9 (or 5) control bits for reference image E,. The DOCIP-hypercube requires O(logN)
control bits for reference image E,.




4.2 General Description

From the above algebraic description, the DOCIPs have the same algebraic structure and differ only in their
neighborhood configurations N.. Thus, they share the same architecture as shown in Fig. 5, but have different
configurations of the refercnce images E; depending on the optical interconnection network which defines the
neighborhood. In practical applications, a largerreference image R can be generated from a set of smalier reference
image(s) E; by a “sequential dilation”. If it is possible to decompose R into a sequence R= E\® E2® ... & E,,
then

XOR=(..((XDE)DE)®...0E).

Figure 6 gives an example: a dilation with a polygon (filled) reference image R is implemented by a sequential
dilation with four line reference images E;; it requires O(L) time for the DOCIP-array and O(log;L) time for the
DOCIP-hypercube where L is the maximun length of the four line reference images. This decomposition may not
always exist, in which case R can always be decomposed as R = Ry UR2U ...U R;, and then

XO®R=(XOR)V(XDR)VU..U(X®R;)

where each R; can be composed from the smaller reference images E;.

0 el '\ o| -— ® /e |
o

X E;

Ea E4

Figure 6: An example of decomposing a dilation with a larger reference image R into a sequential dilation with some
smaller reference image E,. It requires O(N) and O(logN) time for DOCIP-array and DOCIP-hypercube respectively.

The proposed DOCIP as shown in Fig. 5 is a cellular SIMD machine and consists of an array of cells or
processing elements (PEs) under the supervision of a control unit. The control unit includes a clock, a program
counter, a test and branch module for feedback control, and an instruction decoder for storing instructions and
decoding them to supervise cells. The array of cells includes a 1 x 3 x N2 bit destination selector, three N x N x 1
bit memories for storing images, a memory selector, and a dilation unit.

The DOCIP shown in Fig. 5 operates as follows: (1) a binary image (N x N matrix) is selected by the
destination selector and then stored in any memory as the instruction specifies; (2) after storing the images (1 to
3 N x N matrices), these images and their complemented versions are piped into the next stage, which forms the
union of any combination of images; (3) the result is sent to a dilation where the reference image specified by the
instruction is used to contzol the type of dilation; (4) finally, the dilated imagé¢ can be output, tested for program
control, or fed back to step (1) by the address field of the instruction.

4.3 Optical Implementation

The entire system can be realized by an optical gate array with optical 3-D interconnections [10][20). Figure
7 shows an optical concept for the DOCIP-hypercube implementation. It embeds an array of cells in an array of
optical binary gates and performs interconnections of these gates by an optical hologram. It should be noted that
current optical technology has implemented only arrays of moderately large numbers of gates (500 x 500) at very
slow (~ms) switching speeds, and alternatively, arrays of small numbers of gates (2 x 2 to 6 x 6) at fast switching
speeds (0.1us - 50ps) [21][22]). Current ongoing research in a number of laboratories looks promising in eventually
providing the needed arrays of large numbers of gates with reasonably fast switching speeds. Alternatively, control




of the DOCIP can be easily realized by using an electronic host instead of the optical control unit, since control
of SIMD systems is primarily a serial process. The tradeofl is a possible inefficiency in the interfaces between
electronic and optical units. Because of this, the all-optical approach may be preferable in the long term. To
efficiently utilize optical gates, they can be interconnected with a 2-D optical multiplexing technique in which a
common controllable mask is used for all cells. The optical multiplexing technique has following advantages: 1)
the DOCIP will no longer require the broadcasting of instructions from the control unit — instead all cells fan
their outputs into a common controlling mask pixel; 2) it will reduce the number of gates; and 3) each cell has

a simple structure — essentially containing only a 3-bit memory with inverting and non-inverting outputs, and a
multiple-input OR gate for dilation.

~—— Connectons in the DOCIP-hypercubes Opticat Fesdoack Path

==} Connections in the DOCIP-hypercube8

Interconnection Unit
{implemented by
optical hologram)

imaging

N
= & V| it
N
N 1 N Output Side of Array of Celis N x N input Side of Array of Cells
(!mpiemented by optica! gate array) {impk d by optica! gate array)

Fig.are 7: An optical cellular hypercube (DOCIP-hypercube4 or DOCIP-hypercube8). Lmaging optics are omitted for
clarity Each cell connects with cells in the 4 directions or 8 directions at distances 1,2,4,8, ...,2* from it by optical 3-D

free interconnection. The input and output sides of the optical gate array are interconnected by an optical feedback path
and are shown separately for clarity.

To avoid the well-known drawbacks of conventional computers based on von Neumann principles [12] [13], the
machine in Fig. 5 has one instruction which implements the three fundamental operations of BIA along with

fetch and store. This design uses the parallelism of optics to simultaneously execute instructions involving all N2
picture elements.

This single instruction has the following format:

(511571 .-y 86, M, T2, "'lnkadladZ»d31j19j2valyaIy ‘--aalyblvbQI "-1bl)

where k is determined by the chosen neighborhood configuration N., the DOCIP-array requires k = 5 or k = 9
bits for controlling the reference image R at a clock cycle, the DOCIP-hypercube requires k¥ = O(logaN) for N2
cells, and [ defines the maximum length of a program: 2'. The functions of these 11 + k 4 2/ instruction codes are:

® 5,,52,...,5¢ select the output from the memory elements;

e n;,ny, ..., n; control the neighborhood mask, i.e. to specify the reference image;

dy,d,, and dj select the destination memory for storing the image;
e 7, and j; flag an absolute jump or conditional jump;

® aj,az,...,a; are the address for a jump; and

e by, by, ..., b are the address of the instruction.

In contrast with the DOCIP-array, the DOCIP-hypercube increases the interconnection complexity to O(loga N),
but is able to perform many global operations in O(logoN) time. Compared with conventional-array processors
having serial or N-parallel input/output, the DOCIP-array will have the same order of performance in local and
global operations but will be improved in input/output performance, and in principle could be as low as O(1) in
1/0O operations. The DOCIP-hypercube will not only be improved in input/output performance but also in global
operations. With external memory, it can be demonstrated to be general purpose in the sense that it simulates
any Turing machine. One important feature in the design of the DOCIP-array and DOCIP-hypercube is that
optical 3-D) free interconnection capabilities can be used to reduce the cell hardware requirements as well as solve
the global connection and 1/O problems which are difficult to solve by planar VLSI technology.



5. Conclusions

A two-dimensional cellular hypercube architecture has been proposed to have the best features of both two-
dimensional hypercube and cellular logic architectures for image processing. BIA suggests an unified theory of
parallel binary image processing for developing parallel algorithms/languages and can be generalized to grey-level
images. The DOCIP-hypercube utilizes the parallel communication and global interconnection capabilities of
optics for avoiding communication bottlenecks and matching BIA parallel algorithms with the two-dimensional
cellular hypercube architecture. The current design of DOCIP-hypercube has an extremely simple cell organization
with only a 3-bit flip-flop memory and a multiple-input OR gate for emphasizing the binary image processing and
reducing the hardware cost. BIA and DOCIP-hypercube can have many applications in character recognition,
industrial inspection, medical and scientific research, especially morphological image processing. The future work
is its optical experimental demonstration and its analysis of different cell structures with larger grain sizes for
developing fast sophisticated vision algorithms.
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2.4 Nonlinear Optical Processirg with Halftones: Degradation and Compen-

sation Models

This paper is concerned with the halftone process used in coherent optical spatial filtering systems

to provide general nonimontonic nonlinear functions.
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Nonlinear optical processing with halftones: accurate
predictions for degradation and compensation

Ahmad Armand, Alexander A. Sawchuk, and Timothy C. Strand

A general analysis of the halftone process for nonlinear transformations in optical signal processing is
presented. The analysis considers the effects of the nonideal characteristics of the recording medium. The
results predict output errors due to different parts of the recording medium characteristic curve for any
nonlinear transformation. A synthesis method for a discrete halftone screen density profile is also described.
This produces an optimum halftone screen density profile for any form of recording medium characteristic
curve and any type of nonlinearity in the sense that it minimizes the mean-square difference between desired
and degraded outputs. The results of a computer simulation for logarithmic and level slice functions are

given.

I. introduction

In halftone nonlinear optical signal processing the
continuous tone input picture is transformed into a
binary picture by contact printing the continuous in-
put data through a halftone screen onto a high-con-
trast recording medium. The product of the input and
halftone screen transrittances is clipped in the pro-
cess, giving an array of binary dots whose size is a
function of clip level, the input transmittance, and the
halftone transmittance profile. The periodic nature
of the halftone screen causes each subregion of the
binary image corresponding to a constant input inten-
sity to become locally periodic. When placed in the
usual coherent optical filtering system, multiple dif-
fraction orders appear in the Fourier transform plane
because of the sampled input. The procedure for pro-
ducing nonlinearities involves use of one diffraction
order combined with specially made halftone screens.
A filter is placed in the Fourier plane that transmits
the light around one diffraction order and blocks ev-
erything else. This in effect demodulates the image.!
After the filtered diffraction order in the Fourier plane
is inverse tranaformed, the continuous nonlinearity
transformed output appears.

When this work was done all the authors were with University of
Southern California, Signal & Image Processing Institute, Los Ange-
les, California 90089. A. Armand is now with Wilkes College,
Wilkes-Barre, Pennsylvania 18700, and T. C. Strand is now with
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The above process has been formulated with the
assumption that a binary recording medium is used in
the halftoning step.? With this assumption, once the
output intensity is expressed as a function of input
intensity and halftone screen density profile (analy- -
sis), we can easily invert the problem and get the half-
tone screen density profile given the relationship be-
tween the output and input intensities (synthesis).
Unfortunately, almost all recording media deviate
from the binary assumption. This deviation, which is
quite small for high-contrast photographic films, is
quite noticeable for any real-time spatial light modula-
tors presently available.3* Consequently, to utilize
accurately the halftone technique, we remove the as-
sumption of a binary recording medium from the
mathematical formulation of these processes. Da-
shiell and Sawchuk modified the results on halftone
processing for an ideal recording medium by including
the effects of finite slope and saturation density.’
They developed a numerical procedure, valid for
monotonic halftone cells, to compensate in advance for
some recording medium effects (precompensation). A
closed form solution to this problem has been obtained
by Batten and Everett® for some limited nonlinear
transformations. The formulation of Dashiell and
Sawchuk does not predict the effects of general nonlin-
ear characteristics of the recording medium on the
overall nonlinear transformation. Moreover, their
formulation is restricted to monotonic halftone cell
shapes.

In this paper we present a formulation of the half-
tone process which considers a recording medium with
a characteristic curve of general shape and which pre-
dicts the final degradation of the output for any half-
tone screen cell shape. This formulation is examined
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for the case of a binary recording medium, and its
result is compared to previous derivations. To obtain
a general solution to the precompensation problem, an
approximate method which considers a dlaf:repe half-
tone screen density profile is described. Thisgives the
halftone screen density profile for any form of record-
ing medium characteristic curve and any type of non-
linearity by minimizing in the mean-square sense the
difference between desired and degraded outputs.
The results of computer simulation for logarithmic
and level slice functions are shown.

B. Degradation

When a general recording medium is used in the
halftone process, the amplitude transmittance of the
halftoned picture consists of pulses such as shown in
Fig. 1 that are not binary. The amplitude, width, and
shape of these pulses depend on the input picture
density levels, halftone screen density profile, and
shape of the characteristic curve of the recording medi-
um. Each group of these pulses corresponds to a con-
stant intensity subregion in the input picture. The
period L (Fig. 1) of the halftone screen is chosen to be
small compared with the period of the highest spatial
frequency component in the input picture. Thus any
local region of the amplitude transmittance of the half-
toned transparency ¢,(x) is approximately a periodic
sequence of pulses which can be expanded in a complex
Fourier series,

b —j2xkx
tp(x) = ,,.Z_. B, exp(—-}-f——) s (1)
where
B,=L [ 60 exp(jzzkx) dx. @

In the sum of Eq. (1) each term (denoted by k)
represents a grating diffraction order. When we pro-
duce the Fourier transform of the halftoned picture in
the coherent optical processor, these orders appear in
the Fourier plane as isolated spectral islands. The
spatial filter in this plane selects asingle order. Hence
the resulting intensity distribution I, at the processor
output is

I k) = B

L .

= I%L ,(x) exp(ﬂ—zﬁi) dxr . 3)
which relates the intensity at any point of the output
picture to the amplitude transmittance of the half-
toned picture and the selected order k. Now ¢,(x) can
be related to the input intensity I, as follows. Let the
local input picture intensity that produced the above
train of pulses on the halftoned picture be denoted hy
Iin. If the density variation of one period of the half-
tone screen is represented by f(x), the intensity trans-
mitted by the halftone screen is I;, X 10-7¢:).} 1f we let
the amplitude transmittance vs log exposure (logE)
curve of the recording medium be described by
&(logE), we can write
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Fig.1. Amplitude transmittance of a halftoned transparency made
with & general nonbinary recording medium.

gllog E)

1
log I, log E

Fig. 2. Characteristic curve of a binary recording medium.

tal) = gllog{ly X 107} = gllogl, — f(x)]. ()
Replacing this in Eq. (3), we have
L . 2
To(Tig R} = l% L gliogl;, — f(x)] exp(&;f—x) dxl . 5

which relates the intensity at any point of the output
picture to the intensity of the corresponding point in
the input picture through a nonlinear integral relation-
ship. When the specific forms of g(logE) and f(x) are
substituted in this relationship and the integral is
solved, the overall relation between the output intensi-
ty and the input intensity is nonlinear. “This nonlin-
earity depends on g(logE), f(x), and the value of the
order selected.

A. Binary Recording Medium

The characteristic curve of a binary recording medi-
um having a threshold at logl, is shown in Fig. 2.
Ideally, a = 0 and b = 1. Note that this form of
characteristic curve is applicable to a positive trans-
parency. We could also consider the more familiar
negative transparency, although the basic results re-
main the same. We will choose the positive transpar-
ency curve because it is more similar to the characteris-
tic curves for real-time devices. We now simplify the
general relationship of Eq. (5) using the characteristic
curve of Fig. 2.

B. Zero Order
For the zero-order case k = 0, and Eq. (5) becomes
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1 j gllogl,, ~ f()dx
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11,0} = (6)

Given g(logE) as the binary function shown in Fig. 2
and assuming f(x) to be a monotonically increasing
function, we have

1.
if logl,, — f(x) < logl,orx > ! (log f») » then g(logE) = a.
Also,
L
if logl, — f(x) 2 logl, orx < [! (log f‘) + then g(logE) = b.

Substituting these relations into Eq. (6), we have

11,0 = [a + ﬂ’—L—"’ o (log 11_)] . )
where f~1(-) is the inverse function of f(-). This result
is the same as that obtained previously for the casea =
0, b = 1 (Ref. 2) except for the fact that it is obtained in
a more straightforward manner and can easily be gen-
eralized.

C. Nonzero Order

For k = 0, the above simplifications for the charac-
teristic curve can be used in Eq. (5) to obtain

1] (i (“" 17‘1) J2xkx
I ] b exp(—L—) dx

11 k) =
(]
L j2xkx 2
+ [ 1\ @ exp(—) R | R
I_‘(\ﬂ( T') L
If we let
I,
x, = f} (log T) s 9)
then
_(b—a)? . [ 7hkx,
Il k) = T sin® (T) . (10)

After substituting the expression for x; we have

(b-a)? . ,lxk l,
I k) = T ;m’[z— ! (log l—)] . an

This also agrees with the previously obtained results.? .

This new analysis provides not only a straightforward
derivation of the above results, it also leads directly to
the new precompensation techniques described in the
next section.

M. Precompensation

Several methods are available in practice for gener-
ating halftone screens with a desired density profile.
Some methods are purely optical and involve the pho-
tographic recording of geometrical shadows or diffrac-
tion patterns from ruled gratings. Although this tech-
nique produces continuous halftone screens, it does
not have the flexibility to produce precisely arbitrary
screens needed for nonlinear processing.

f(x)
)
continuous f(x} .
=
i
~ '
. ]
03 pr = - . ‘
’ discrete f(x)!
a # {
O| 11 : - X
oL L, Lyl

Fig.3. Step approximation to halftone screen density profile.

Another type of halftone screen density profile that
can be generated in practice is a step function approxi-
mation to the desired continuous density. These half-
tone screens are generated by digital image recorders,
plotting microdensitometers, or step-and-repeat cam-
eras. Hence the theoretical accuracy available in de-
signing the halftone screen density profile is limited by
the practical limitations in making the screen. This
motivates the following analysis which considers the
halftone screen density profile as a step function ap-
proximation of the ideal profile. As will be shown in
this section, this assumption helps to simplify the for-
mulas and allows us to obtain some conclusions which
cannot be drawn from the continuous density analysis.
To do so, we utilize a discrete density halftone screen
and derive optimization formulas for the zero and non-
zero orders.

A. Zero Order

Equation (6) is the general formula relating the out-
put intensity in the zero order to the input intensity.
Let f(x) be approximated as shown in Fig. 3, then Eq.
(6) can be written as

1[4
LU0 0) = IE[L gllogl;, — a,)dx

Ly
+ [ g(logl,, — a;)dx
L\

2

L
o4 j gllogl, ~ aN)dx] 12
Ln-1

Assuming that the x-axis intervals are all equal, i.e.,

cLy-Ly,=%. (13)

Li-0=L,~L,=... <

Eq. (12) reduces to
1 N 2
Il 0) = | 55 > gllogh, ~ a) 14
i=]
The above formula gives the output intensity in the
zero order as a function of the discrete grey levels on
the halftone screen and the characteristic curve of the
recording medium.

To design the proper halftone screen, we want
a,l,...i,...,Nin Eq. (14) where g(-) and the desired
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functional relationship of Io(lin,0) in terms of Iin are
given. Although Eq. (14) is an approximate represen-
tation of I;,,, we can require it to be exact for a discrete
set of values of [;, = I ., where 1,...,m,... .M. Thusin
discrete form Eq. (14) can be written as

N 2
1
L0 = |5 zg(logll -a)

=1

N 2
11,0 = Tlv—zg(\ogl,, -a) (15)

2

N
1 .
Il = |5 Z gilogly — a))

One procedure to find the optimum a; terms is to
minimize the mean square error expression

M N
nll-:]z-l“iy - |10(1m'0) - [N g(log]m - a.)

mei iw]
This should produce values of g; that bring the output
intensity in the zero order as close as possible to the
desired output intensity in the mean square sense.
Now, because the a; terms are the different density
values on the halftone screen, we constrain their values
to lie within certain limits, as expressed by

2
(16)

c<a,<d, an

where c and d are given non-negative constants. This
makes the optimization problem one of constrained
minimization. We want a transformation from
[-w,=] to[c,d]. The functionssin?and cos? are exam-
ples of functions that transform [~«,»] to [0,1]. We
arbitrarily choose the sin? function. If we let’

a; = (d ~c)siny, + c, (18)

this limits the values of the a; to the range [¢,d]. With
this change of variable, Eq. (16) now becomes

M
minE = z
NIy IN

me|

Iy(1,,.0)

N 2|2
- {% Zgnogl,, - (d - ¢} siny, - cl} | » (19)

which gives the values of y, terms. The corresponding
a; terms can then be found from Eq. (18).

In going from Eq. (16) to Eq. (19) we should make
sure that the minimum of E with respect to the a; terms
is in fact the same as the minimum of E with respect to
the y, terms. To check this, note that when we mini-
mize E with respect to y,, we set

% _, L...d....N. (20)

which is equivalent to

9E 9da, _ .
5‘ 5;‘ =0, 1,....4...,N, (20

from which we have
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— =0, L...4...N

3, 4 (22)
or

da; .

— =0, 1,...4,...,N. (23)

dy;

Hence to have Eq. (22) true when Eq. (20) is true, we
should avoid satisfying Eq. (23). To check for this
condition note that

6“! -
— = (d ~ ¢) sin2y,, o (24)
%,

which when set to zero gives

y=0—a,=c 1,...4... N (25)

or

y,=%—~a,-=d L. oise . N (26)

It can be seen that the only values of a; in the range
[c,d] that make 3a;/3y; = O are the boundaries of this
interval. This can be prevented from causing a prob-
lem by choosing ¢ and d so that the interval [c,d]
contains the limit values for the a; terms.

As an example of a function possible with the zero
order consider the design of a logarithmicscreen. Ina
logarithmic process we want the relationship

Iy(10,0) = p - logll /1) 27)

between the output and input intensities where p is a
constant and I, is shown in Fig. 2. Hence, to find the-
optimum screen giving the above logarithmic relation-
ship with a recording medium characteristic curve
g(logE), we must perform the minimization

M
mink = -logli, /1)
ming 2(" og(

me|

1 N 23?2
- {ﬁ Zgllogl,,, ~(d = ¢} sin’; - c]} ) . (28)

For the initial values of the above minimization we will
use the halftone screen density profile values obtained
for a binary recording medium. This helps the mini-
mization converge more rapidly, particularly when the
recording medium response is close to binary. Inprac-
tice, we do not expect to perform halftone nonlinear
processing with a very low gamma recording medium.
To obtain the halftone screen density profile for the
logarithmic process with a binary recording medium as
shown in Fig. 2, we equate Eqgs. (7) and (27) to get

{._.: _ (b -a) I\
plog( l’)-[a-k I f (log—;r—) (29)
and substitute u = log(l;n/I) in the above equation to
obtain

pou= [a + Qli-‘i’ F'(u)]? . (30)

Because log is a monotonic function, the corresponding
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1 !
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Fig.4. Characteristic curve of a piecewise linear recording medium.

halftone screen density profile will also be a monotonic
function. Hence f is a monotonic function so we can
write f[f~'(u)] = u. Using this in Eq. (30) we have

P'/V_l(u)]=[a+9—?—)/_'(u)]1- 31)

Now let x = f~!(u) in the above equation to obtain

f(x)=l[a+(b—a)x]1- 0<x<L. (32)
p L

Hence the initial values for the a; terms are
g, = l[a + (" - “):T. 0<r<L, L...4...N (33
p L

From Eq. (18) the corresponding y; terms are

yi=smn™! [(p(dl— 3 [a + (E%i) I,T - c)m] . (34)

The above y; terms will now initialize the minimization
procedure of Eq. (28) to obtain the corresponding y;
terms for a nonbinary recording medium.

A computer algorithm was written which performs
the above minimization. It uses the ZXMIN subroutine
which is taken from the IMSL library.# This subrou-
tine is based on a quasi-Newton algorithm for finding
the minimum of a function of N variables. In the
quasi-Newton method we do not directly solve for the
minimum of E by solving Eq. (20) directly. Rather we
use an iterative procedure which starts from the initial
point and uses Eq. (20) to get as close as possible to the
minimum. Thus we do not expect to produce the
undesired solution of Eq. (23) as the minimum.

The results for recording media of the type shown in
Fig. 4 with a = 0, b = 1, and different slopes in the
linear part are shown in Figs. 5-8. The slopes are
called gamma in the figure but should not be confused
with the usual photographic gamma. It is assumed
that there are thirty discrete points in the halftone
screen density profile, and the density values are be-
tween 0 and 2 in these figures. It is also assumed that
the values of logl, (shown in Fig. 2) lie between the
middle of the values of log/, and logl, (shown in Fig. 4).
Note that the plots of the input-output curves are
semilogarithmic, and hence the result is a straight line.
In Figs. 5 and 7 the graphs labeled ideal represent the
desired relationship between input and output intensi-
ties. This can be obtained with the halftone screen

density values of Eq. (32) and binary recording medi-
um characteristic curve of Fig. 2 in Eq. (5). The de-
graded graph is obtained by using the density values of
Eq. (32) and the recording medium of Fig. 4 in Eq. (5).
The optimized graph is generated by using the density
values obtained from Eq. (28) and the characteristic
cure of the recording medium for which those density
values were produced in Eq. (5).

In Figs. 6 and 8, the ideal graph represents the densi-
ty profile of a halftone screen for a logarithmic process
using a binary recording medium. "The optimized
graph is the dznsity values obtained from Eq. (28) for a
recording medium with the characteristics shown in
Fig.4. ItisseeninFig.5 that for gamma of 3.0, there is
asignificant amount of degradation, and the optimized
screen has been successful in removing this degrada-
tion. For agamma of 10, shown in Fig. 10, as one might
expect, there is less degradation, and the optimized
screen is even more successful in producing the ideal
result.

B. Nonzero Order

The general formula relating the output intensity in
the nonzero orders to the input intensity is

. .
z ] gliogl,, - ftx)) exp("""'“‘)a!zl2 (35)
0

Ll k) =

L

from Eq. (5). Using a quantized approximation to
f(x), as in the zero-order case, we can write (from Fig. 3)

1[4 j2xkx
L[L gllogl,,, ai)exp( i )dx

Io(lin.k) =

L .
+ j gllogly, — a,) exp(ﬂzkx) dx+ ...
Ly

L i 2
+ j gllogl, — ay) exp(ﬂ—'h-i) dx:” .

Ln-1 L
(36)
For simplicity we let
glogl, —a) =g.1,...4... N @an
Then :
1 j2xk(L, - 0)
lo(lmvk)=m guyew| — T SR 7Y
f2xhLy_, j2ekl — Ly-] )P
x exp( L exp ———Z'—‘—— - .
(38)
Now from Eq. (13)
L,-0=L,—L,~...=Ly=-Ly.,=L/N, (39)
so when Eq. (39) is used in Eq. (38) we have
1 j2xkL,
To(Tink) = e B +8, OIP( 3 R
J2rkLy_\|? j2:k) 2
pnabid o -1 - 40
X exp( L )| exp( N 1 (40)
Note also that
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Consequently Eq. (40) can be written as
e (22

4x2k?
N . . 2
> sllogl,, ~a,) exp[MJI © )

{oll 0 k) =

N

=1

Equation (42) gives the output intensity in any non-
zero order k in terms of the input intensity, the charac-
teristic function of the recording medium, and the
discrete grey levels on the halftone screen. To design
the proper halftone screen, as in the case of the zero
order, we should determine suitable a; values from Eq.
(42). The procedure that we take is the same as the
one for the zero order. Namely, we minimize the ex-
pression
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I 1

N ] . 2} 2
Zg(logl,,, —a,)exp[l—z’r—k%ﬁ]l } . (43)

M .
inE = ot exp (222N
minE z {Io(lm,k) PR |exp( N ) ll

To limit the resulting density values as in Eq. (17) we
transform the problem to the minimization

J2xkY _ |2
exp( N ) ll
N

Egllogl,, — (d — ¢) sin?y, — ]

M

1
inkE = Io(1,,.k) =
y?.l.l...y,v z{ 0 4xk?

me]

J2xk(i - 1)]]2)2
indikd L4 4
X elp[ N ]l } (44)

The y, terme are related to the a; terms through Eq.




Y e

(18). To initialize the values of the y; terms for this
minimization procedure, we use the density values
obtained for the screen when the recording medium is
binary.

As an example of a function possible in the nonzero
order we consider the design of a level slice screen. To
obtain a level slice transformation the first order is a
suitable choice. For this function we want

0, forl, <I,

L) ={ L. forr, <1, <1, (s)
k g
0. for Iin 2z Ib‘

This function is shown in Fig. 9. The density profile
given a relationship for the binary recording medium
shown in Fig. 2fora=0and b= 1is

logll /1), for0<x< % .

flx) = L (46)
log(l/1,, for 3 <sx<L, -

which is shown in Fig. 10. The corresponding density
levels in the discrete screen are

log( /1), fori<X,

%= : )
log(l/1,), fori2 7
- 172
sin! {[lig(_f;_/i')—g] } fori < N
n (48)

2
y -
) 1JL) — c 2
sin! {[-l:ﬂ—b”'—)——c] } fori > N,
d-c 2

With the initial values for y; terms as above we then

want to minimize
j2r\ _ 2
exp(-—N ) IJ
N

2. ellogl,, — (d - o) sin’y, = c]

e N2
X exp[&(—-;vl—)-n } . (49)

A computer routine similar to the one for the loga-
rithmic process has been written to perform the above
minimization. With the same assumptions about the
recording medium and the halftone screen as with the
logarithmic process, the result is shown in Figs. 11-14.
Figure 11 sliows the ideal level slice function and the
results that would be obtained for a recording material
with an effective gamma of 3.0. Also shown is the
optimized level slice obtained by precompensating the
halftone screen profile. It is seen that although the
mean square error between the ideal and the actual
response curves can be significantly reduced, the finite

d 1
minE = 2 {Io(l,n.l) -3
x

Yiee o IN

I Ib - Iic\

o
Fig. 9. Level slice function.
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Fig. 11. Level slice transfer function for a piecewise linear record-
ing medium with gamma = 3.0: (a) ideal; (b) degraded; (¢) opti-
mized.

slope of the leading and trailing edges of the level slice
is still limited by the gamma of the recording medium.
Figure 12 shows the halftone profile for an ideal re-
cording material and the precompensated halftone
profile for a recording material with a gamma of 3.
Figures 13 and 14 are the corresponding results assum-
ing a recording material with a gamma of 10, which is
much closer to the ideal.
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IV. Conclusions

A new formulation of the halftone nonlinear pro-
cessing technique has been presented. The formula-
tion is general and works for any recording medium
characteristic curve shape and any halftone screen cell
shape. Thus one can easily predict the amount of
degradation of the output due to a nonbinary charac-
teristic curve of the recording medium. This is partic-
ularly useful for real-time realization of the halftone
processing. In this case, a real-time image transducer
is used as the recording medium. Because the pres-
ently developed devices do not possess the desired
sharp threshold characteristic, halftone screen pre-
compensation is necessary.

The problem of the design of the halftone screen
density profile with a nonideal recording medium has
been solved by an approximate method which obtains
the halftone screen density profile by minimizing the
difference in a mean square sense between desired and
degraded outputs. Results of computer simulations
for logarithmic and level-slice transformations have
been given. The results show that for smooth nonlin-
earities like the logarithmic function, it is possible to
compensate for the nonideal characteristic of the re-
cording medium. For nonlinearities with sharp jumps
like the level-slice function, the compensation is less
successful.
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2.5 Optical Symbolic Substitution and Pattern Recognition

The attached paper “Optical Symbolic Substitution and Pattern Recognition Algorithms Based
on Binary Image Algebra” by K.S. Huang, B.K. Jenkins and A.A. Sawchuk from ICO Topical
Meeting on Optical Computing, Toulon, France, August 29 - September 2, 1988 describés the

application of binary image algebra to pattern recognition systems for cellular processors.
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Abstract

Pattern recognition algorithms and algebraic properties of binary image algebra (BIA) are used to improve the speed, flexibility
and complexity of symbolic substitution.
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Optical Symbolic Substitution and Pattern Recognition Algorithms
Based on Binary Image Algebra

K. S. Huang, B. K. Jenkins, ‘A. A. Sawchuk
Signal and Image Processing Institute. Department of Electrical Engineering,
University of Southern California, Los Angeles, CA 900890272, USA

Summary

Binary image algebra (BIA), a unified systematic complete theory of parallel binary image processing 1], also provides a
unified spatial logic of digital optical computing for describing symbolic substitution, cellular logic and Boolean logic in parallel [2].
Symbolic substitution has been used to implement logic, arithmetic, communication and simulating a Turing machine [3]; but its
implementation of some operations {e.g. parallel binary arithmetic) is relatively complicated to other BIA implementations (2). In
this paper we further suggest some BIA algebraic techniques and pattern recognition algorithms, including a shift. scale and rotation
invariant algorithm. to improve the speed. flexibility and complexity of symbolic substitution.

A symbolic substitution rule involves two steps: 1) recognizing the locations of a certain spatial search-pattern within the 2.D
input data, and 2) substituting a new replacement-pattern wherever the search-pattern is recognized. As illustrated in Fig. 1, BIA
can be used to realize a symbolic substitution rule defined by:

(XOR)8Q=((X9Rm)N(XoR)N®Q=(XdR)u(Xad ) Q (1)

where X is the 2.D input data, R = (Ri, R:) is the reference image pair corresponding to the search-pattern (R; and R; define the
foreground and the background of the search-pattern respectively), R defines a reflected reference image given by R = {(-z, -y) |
(z,y) € R}, Q is the reference image corresponding to the replacement-pattern, “ @®” denotes the hit or miss transform which is
the pattern recognizer, “©” denotes the erosion operation, and “@” denotes the dilation operation which is the pattern replacement
operator. To work with more than one rule (say p substitution rules) for practical applications, a symbolic substitution system (Fig.
2) produces several copies of the input X, provides p different recognizer-substituter units, and then combines the outputs of various
units to form a new output. Thus, a symbolic substitution system is implemented by

p

Uxer9)eq® (2)

1=l

where RV and Q) § = 1,2,..., P, are the reference image pairs and replacement patterns in the i** symbolic substitution rule.
This, then, is the BIA formula for general symbolic substitution.

However, in many cases the above form is inefficient and can be reduced to a relatively simpler form or implemented in a more
efficient way by using some BIA algebraic techniques. Here are some examples: 1) the full recognition can be implemented by only
the background or foreground recognition under certain conditions; 2) if Q(*) = 4, the i** symbolic substitution rule in Eq. (2) is
not needed (e.g. the four rules of binary subtraction in simple intensity coding of arithmetic data can be reduced to only two rules
[2]); and 3) if Q¥ = Q for all 1 < i < p (this happens in those cases that a class of search-patterns is defined by a set of reference
image pairs R, i = 1,2, ..., p), we should combine the results of the hit or miss transforms first and then replace them by the same
replacement-pattern Q instead of implementing p substitution units for realizing the same substitution step, i.e.

P
JxerMeaq. (3)

The practical difficulty with the implementation in Eqs. (2) and (3) is that the hit or miss transform is only efficient {or the
shift invariant recognition and would require a large number of intricate reference image pairs to perform the recognition step in the
presence of changes in scale, rotation or both. Thus, it might be too costly to implement scale and rotation invariant recogaition of
intricate patterns for symbolic substitution based on the above formula. For example, if we want to substitute all “square patterns”
in an input image by the same character “S”, it would be very inefficient to use the above symbolic substitution implementation
techniques.

To solve this kind of scale and rotation invariant problem, here we recognize all the desired patterns by reversing the growing
procedure of a family of patterns. This family defines all patterns in the presence of changes in scale, rotation or both, and transforms
all the desired patterns into their original seeds, which are isolated single image points. We have developed a description of this
procedure in terms of BIA. For brevity, here we describe only the case of shift and scale invariant recognition. Suppose we want to
tecognize all square patterns with different scales and locations in the input image X (e.g. Fig. 3(a)) and to produce the output
image Y (e.g. Fig. 3(b)). The procedure is: 1) determine a growing sequence of the desired patterns T, (e.g. Fig. 3(c)). where
0 < i < m and the largest size of the desired patterns is m x m; 2) find a small set of good reference image pairs { R(8)} (e.g. Fig. 3(d)
has only 3 small reference image paits for recognizing all square objects with different scales) satisfying some criteria, where each
reference image pair in { R(9)} corresponds to a possible neighborhood of a given foreground image point in a pattern T, 1 <+ < m,
whose previous state in the pattern Ti_; is a background point; 3) transform the desired patterns T\, i = 1,2,...,m, in the 2-D input
image X = X{(t9) into their original seeds (i.e. To which contains one and only one foreground image point) by the recursive.relation
X(tus1) = X(ta)/ U,e_3 X(ta) ® R(8). where 0 < k < m: and 4) pick up the original seeds by Y = X(tm) @ Q, where Q (Fig. 3(e))




is a reference image pair with one and only one foreground image point at the center and Y is the final recognition output. By
selecting good reference image pairs associated the growing sequences of ratation patterns, we can extend shift and scale iﬂ\'a.rianc.g
to include rotation invariance in a similar way. This algorithm can efficiently reduce the computation complexity for a certain class
of pattern recognition and symbolic substitution problems; their computation times depend only on the diameter of the largest
desired pattern, but not on the number of patterns nor the size of the whole image.

A digital optical cellular image processor (DOCIP) {1} (2] implements all the above algorithms of symbolic substitution and
pattern recognition in a flexible and efficient way compared to a symbolic substitution processor (Fig. 2) with p fixed recognizer-
substituter units. The DOCIP programming for these aigorithms will be illustrated.
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2.2 Digital Optical Cellular Architectures

The papers reprinted in this section discuss details of optical cellular architectures and their in-

struction set.

The DOCIP is a 2-D, page oriented array of individual processors located at every pixel of a
large image. The attached paper by K.S. Huang, B.K. Jenkins and A.A. Sawchuk, “Binary Image
Algebra and Optical Cellular Logic Processor Design”, submitted to Computer Vision, Graphics
and Image Processing, summarizes some of these concepts and their algebraic background. Fol-
lowing this paper is “Optical Symbolic Substitution and Pattern Recognition Algorithms Based
on Binary Image Algebra”, by K.S. Huang, B.K. Jenkins and A.A. Sawchuk, from the /CO Topi-

cal Meeting on Optical Computing, Toulon, France, 1988, which contains additional information.

This paper is concerned with the hardware implementation of one cell of a prototype digital

optical cellular image processor (DOCIP).
J
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Abstract

A processing element of a prototype digital opt.'fal cellular image processor (DOCIP) is implemented to
demonstrate a particular parallel computing and interconnection architecture.
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Summary

Digital optical cellular image processor (DOCIP) architectures, DOCIP-array and DOCIP-hypercube, can perform
the tasks of parallel binary image processing and parallel binary arithmetic [1]. The use of optical interconnections per-
mits a cellular hypercube topoligy to be implemented without paying a large penalty in chip area (the cellular hypercube
interconnections are space-invariant which implies relatively low hologram complexity); it also enables images to be input
to and output from the machine in parallel. Table 1 gives a comparison of three different interconnection networks: cel-
lular array (DOCIP-array interconnection network), conventional hypercube, and cellular hypercube (DOCIP-hypercube
interconnection network). In this paper we experimentally demonstrate the concept of the DOCIP architecture by imple-
menting one processing element of a prototype optical computer including a 49-gate processor, an instruction decoder,
and electronic input/output interfaces.

A multiple-exposure multi-facet interconnection hologram provides the fixed interconnections between the outputs
and the inputs of an array of 7 x 7 optical gates. The input data and the instructions are supplied from an LED array.
The outputs of optical gates are detected by a video camera and compared with the results of a software simulation. A
diagram of the main componeats of this expenimental system is shown in Fig. 1.

A space-variant interconnection system [2] for within-processor interconnection is used in this experimental demon-
stration. A computer controlled system is used to make an array of 49 interconnection subholograms. An optical point
source S, whose position is controlled by the mirror M2 with two rotational stages (Fig. 1), is used to provide an object
beam for determining an interconnection of a subhologram in the multi-facet hologram. A mask with a circular apertaure,
controlled by two translational stages, is used to determine the sizes and positions of subholograms in a holographic plate.
The interconnection hologram for this 49-gate optical processing element comprises 49 subholograms, which are laid out
in a 7 x 7 array. Each subhologram covers a circular area with a diameter of 1.5 mm. The spacing between the centers
of two subholograms is 3.0 mm. Note that the path of the object beam and the mask for subholograms are only used for
making the interconnection hologram; they are blocked or moved when we reconstruct the hologram to implement the
interconnections of the optical gates. We use a volume phase hologram with a dichromated gelatin medium for obtaining
high diffraction efficiencies.

The array of 7 x 7 optical gates is implemegted by a Hughes liquid-crystal light valve (LCLV) with liquid-crystal
molecules in a 45° twisted nematic configuration {2]. The LCLV is read out between crossed polarizers and is biased to
implement a NOR operation. The gate size in this experiment has a diameter of 0.3 mm and the spacing between the
centers of two gates is 0.6 mm.

The circuit diagram of the processing element, as shown in Fig. 2, consists of 49 NOR gates with maximum fan-in
of 3 and fan-out of 4. The processing element includes a 3-bit destination selector, a 3-bit master-slave flip-flop memory,
a 6-bit memory selector with a union module, and a 5-bit neighborhood selector (for DOCIP-array4 [1]) with a dilation
module. This experimental DOCIP system has one instruction, supplied from an LED array and decoded by the optical
hardware. This instruction has the format: (¢, dy,d3, ds,s1,93,..., 3¢, 81,02, ...,85) where ¢ selects the image from the
input or from the feedback; dy, ds, and d; select the destination memory for storing the image; 51,33, ..., 3¢ select the
output from the memory elements; and ny, n3,...,ns control the neighborhood mask, i.e. supply the reference image. We
will experimentally demonstrate the DOCIP architectare concept with this system.
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2.6 Parallel Processing and Optical Computing

A third area of rescarch on this grant has been the general investigation of the impact of opti-
cal computing technology on parallel computing architectures, including consideration of SIMD,
MIMD and data flow structures. We have studied the relationship of these architecturesuat low
to high levels of processor graininess. the following paper “Parallel Processing Paradigms and
Optical Computing” by B.K. Jenkins and A.A. Sawchuk, which appecared in the Proc. Optical
Computing Symposium, SPIE Vol. 625, Los Angeles, January 1986, discusses shared memory
and graph/network models for parallel ‘computing in the context of the physical constraints and

technology of optical computing.




Parallel Processing Paradigms and Optical Computing

B. Keith Jenkins
Signal and Image Processing Institute MC-0272, University of Southern California, Los Angeles, Catiformia 90089-0272

and

C. Lee Giles
Air Force Office of Scientific Research/NE, Bolling AFB, D.C 20032-6448

ABSTRACT

Parallel processing models as computational paradigms are discussed and related to optical computing.
Two classes of parallel computing models are discussed - shared memory models and graph/network models.
These models are used to analyze some of the possible effects of optical technology on parallel computing. It is
found that the use of optics potentially provides certain fundamental advantages. In addition, some factors that
limit the communication capabilities of optical systems in the case of network models are found.

INTRODUCTION

In this paper we look at paradigms and models for parallel processing as an attempt to increase our under-
standing of the role optical computing. Most of the parallel architectures discussed in the parallel processing
community are heavily influenced by the constraints of electronic systems. The purpose of our approach in this
paper is to abstract the notion of parallel computing from the limitations of any given technology. This abstract
model can then be used as a starting point for the design of parallel optical computing architectures. In the pro-
cess, some of the consequences of inherent differences between optical and electronic systems start to become
apparent.

Computing paradigms are important for understanding the level and class of problems that the computer
scientist is addressing. Consider the following structural paradigmatic classification: physical, functional, compu-
tational. A representation and example of each of these paradigms is illustrated in Table 1. Here we are only
concerned with the computational paradigm and the optical implications.

Table 1. Processing paradigm levels

PARADIGMS REPRESENTATION EXAMPLE
Physical Hardware/Technology IC, Board
Functional Architecture PE, Memory,

Interconnection Topology

Computational Algorithms/Metrics Turing Machine,
Automata, Random
Access Machine

Before discussing computational models, both sequential and parallel, we define computational order or
complexity as it is used in this paper. The interest here is in establishing a quantitative measure of the compu-
tational power or cost of a problem, task or algorithm of size n. The parameter n provides a measure of the
difficulty of the problem in the sense that the time required to solve the problem or the storage space required,
or both, will increase as it grows. The measure or cost of running or executing an algorithm on a problem of size
n is defined as the complexity function f . Thus, f is a measure of the time or space required for the execu-
tion of the algorithm. For a time measure, f (n) is called the time complexity function; for a space or storage
measure, f (n) the space complexity function. Unless otherwise denoted the complexity function used in the
paper is the time complexity function.

Our principal concern is with the performance of algorithms for large values of n, i.e. the asymptotic
behavior of complexity function. If the value of n is sufficiently small, then even inefficient algorithms will cost
the same to run. We assume the choice of an algorithm for small problems is not usually critical. The asymp-
totic behavior of is defined as O (f ), the order of f . We will not give a formal definition of O (f ) but illus-
trate its properties in Table 2. For a formal definition and more extensive discussion of these concepts see

Proc. Optical Computing Symposium, Society of Photo-Optical Instrumentation Engineers 'S6 Optoelectronics and Laser
Applications in Science and Engineering, SPIE Vol 625, Los Angeles, lanuary 1986




Stanat and McAllister (1977). Table 3 illustrates the growth of certain complexity functions as a function of the
size of the problem (after Stanat and McAllister). As one can see, a problem can get out of control rather
quickly for certain orders of complexity. :

Table 2. Examples of computation complexity and order.

Complexity f Order O(f)
63 ; 1
50n n
n2+n +100 n?
nlog, n n logn

Table 3. Growth of some common complexity functions. The entries are proportional to the time required to
solve a problem of size n.

Problem size n | log n n n log n n? an n! |
5 3 5 12 25 32 120
10 4 10 33 10? 1024 3x10°
10? 7 10? 664 10* 13%x10¥ >10®
10° 10 10% 9965 10° >10!% >101%
104 14 10*  1.4X%10° 108 >10!%0 > 1000

Computational models are important because they measure the performance of general classes of both
sequential and parallel algorithms on an idealized abstract machine. However, the performance of these models
is highly dependent on the class of algorithms. If the generic class of algorithms is known for a specific problem
{e.g. the communication algorithms of broadcasting, reporting, sorting, etc.), then the computational model
which efficiently runs these algorithms would be a starting point for the design of a computer architecture that
would do the same. The basic assumption is that algorithms which run well on a computational model should
run well on the model-derived architecture. Our intention is to show that optics has a greater potential than
electronics for physically realizing some of these computational models.

SEQUENTIAL COMPUTATIONAL MODELS

Since parallel computational models are for the most part extensions of sequential models, we briefly dis-
cuss these sequential machines. The most primitive and basic cf the sequential machines is a Turing machine
(TM) of which there exist many forms: universal, non-deterministic, multi-tape, multi-head, 2-D tape, finite state
automata, etc. (A finite state automation (FSA) can be described by a TM in which the tape moves in only one
direction). The universal TM has the capability of computing any algorithm that is computable (a rather circu-
lar thesis since a universal TM defines what is computable). A principal application of the TM is in determining
lower bounds on the space or time necessary to solve algorithmic problems. Since the TM is a well-known com-
putational model, we highly recommend for further interest the very informative text by Minsky (1967).

The Random Access Machine (RAM) is a less primitive computational model which can be stylized as a
primitive computer. The RAM model is a one-accumulator computer in which the instructions are not allowed to
modify themselves. Figure 1 illustrates a RAM which consists only of a read-only input tape, a write-only out-
put tape, a program and a memory (Aho, Hopcroft, and Ullman, 1974). Notice the close similarity to a TM. In
fact time on the RAM is bounded above by a polynomial function of time on the TM. In particular, for a TM of
time complexity T(n)>n, a RAM can simulate the TM in O (T (n)) or O (T (n }logn ) time, depending on the
cost function used for the RAM. For the converse, using a TM to simulace a RAM, the bounds on time required
by the TM are higher and are highly dependent on the RAM cost function used (Aho, Hoperoft, and Ullman,
1974). The program of a RAM is not stored i~ memory and is unmodifiable. A sample RAM instruction set is
shown in Table 4. A common RAM model is the uniform cost one, which assumes that each RAM instruction
requires one unit of time and each register one unit of space. It is from attempts to parallelize the RAM compu-
tational model that many parallel computational models emerged.




Table 4. Sample RAM instruction set. Read-only Ingut Tape
JGTZ is jump if greater than zero. R R A
JZERO is jump if equal to zero. 112f3)" "1«
Operation Code  Address S 1
1. LOAD operand X !
2. STORE operand Ny }Accvmwhlo' "
3. ADD operand | Location P i
4. SUB operand ! | Counter had ' :
5. MULT operand 1 bl I
6. DIV operand ' o X
7. READ operand ' Memory' '
8. WRITE operand | = 0000@0mmo-———= - b — e — e, - -~ —~
9. JUMP label .
10. JGTZ label ..
11. JZERO label Wrta-only Outpur Tape
12. HALT

Fig. 1. Random access machine (RAM)

SHARED MEMORY MODELS

We will discuss only two classes of parallel computational models; shared-memory models and
graph/network models. As might be inferred from the shared memory term, these models are based on global
memories and are differentiated by their accessibility to memory. In Fig. 2 we see a typical shared memory
model where individual processing elements (PE’s) have variable simultaneous access to an individual memory
cell. (A processing element is a physically isolated computational unit consisting of some local memory and com-
putational power. A PE can be construed as a computational primitive from which more sophisticated architec-
tures can be constructed (Hwang and Briggs, 1984)). Each PE can access any cell of the global memory in unit
time. In addition, many PE’s can access many different cells of the global memory simultaneously. In the
models we discuss, each PE is a slightly modified RAM without the input and output tapes, and with a modified
instruction set to permit access to the global memory. A separate input for the machine is provided. A given
processor can generally not access the local memory of other processors.

shared
MOMOry

memory
cell

4

Fig. 3. One memory cell (or pixel) of an array,
showing multiple optical beams providing
Fig. 2. Conceptual diagram of shared memory models. contention-free read access.

The models differ primarily in whether they allow simultaneous reads and/or writes to the same memory
cell. The PRAC, parallel random access computer (Lev, Pippenger and Valiant, 1981) does not allow simultane-
ous reading or writing to an individual memory cell. The PRAM, parallel random access machine, (Fortune and
Wyllie, 1978) permits simultaneous reads but not simultaneous writes to an individual memory cell. The
WRAM, parallel write random access machine, denotes a variety of models that permit simultaneous reads and
certain writes, but differ in how the write conflicts are resolved. For example, a model by Shiloach and Vishkin
(1981) allows a simultaneous write only if all processors are trying to write the same value. The paracomputer
(Schwartz, 1980) has simultaneous writes but only ‘“‘some” of all the information written to the cell is recorded.
The models represent a hierarchy of time complexity given by



TPRAC> TPRAM> TWRAM

where 7 is the minimum number of parallel time steps required to execute an algorithm on each model. More
detailed comparisons are dependent on the algorithm (Borodin and Hopcroft, 1985).

Implications of optics

In general, none of these shared memory are physically realizable because of actual fan-in limitations.
Optical interconnections permit greater fan-in than electronic systems. In addition, the non-interacting property
of photons in a linear medium (versus the mutual interaction of electrons) may permit simultaneous memory
reads much more easily. As an electronic example, the ultracomputer (Schwartz, 1980) is an architectural man-
ifestation of the paracomputer that uses a hardwired Omega network between the PE’s and memories; it simu-
lates the paracomputer within a time penalty of O (logn ).

Optical systems could in principle be used to implement this parallel memory read capability. As a simple
example, a single 1-bit memory cell can be represented by one pixel of an array; the bit could be represented by
the state (opaque or transparent) of the memory cell. Many optical beams could simultaneously read the con-
tents of this memory cell without contention (Fig. 3). In addition to this an interconnection network is needed
between the PE’s and the memory, that can allow any PE to communicate with any memory cell, preferably in
one step, and with no contention. A crossbar is not sufficient for this because fan-in to a given memory cell
must be allowed. Optical systems can potentially implement crossbars that also allow this fan-in. For example,
some of the optical crossbar designs discussed in Sawchuk and Jenkins (1986) can include fan-in capability.

GRAPH/NETWORK MODELS

Graph/network models are characterized by a collection of usually identical PE’s that are interconnected
with a fixed network. They can be represented by graphs, with a node of the graph for each PE and an arc or
link of the graph for each PE to PE interconnection. The models differ from one another in the length of time
required for a message to traverse one arc of the graph, and on the assumptions placed on the PE’s such as their
ability to respond to multiple messages. The feasibility of implementation of these models depends on the con-
nectivity of the graph; if the connectivity is not too high, the model is much more readily implemented than the
shared memory models.

Network models can be compared to shared memory models. Any of the shared memory models can
efficiently simulate (in O (1) time) a network model. This is done by dedicating a different cell of the global
memory for each link of the network. One PE sends a message to another by writing the message to a memory
cell which the other PE then reads. Conversely, suppose the network model is capable of (partial) routing in
r(n) time. Then it can simulate one step of the PRAC, PRAM, or WRAM in O (r (n )} time (Borodin and Hop-
croft, 1985).

In a highly parallel machine communications are exceedingly important and for many tasks can dominate
the execution time of the algorithm. We therefore concentrate on communications in our analysis of these
models. The effectiveness of different PE network topologies can be evaluated by comparing metrics, essentially
measures of the topological characteristics, or by comparing the number of time steps required to complete vari-
ous fund~mental communication tasks or algorithms. Examples of metrics include diamecter, the shortest dis-
tance between the two most separated nodes where distance is measured in terms of number of links, and
bandwidth, the maximum number of messages that can be simultaneously sent over the network in one time
step. Levitan (1985) compared different architectures based on network models using both metrics and commun-
ication tasks, and concluded that communication tasks are a better predictor of actual run time performance on
a given topology than are metrics. In our analysis we will use communication tasks.

PE Complexity and Communications

Since the performance of network models depends on the assumptions on the individual processing ele-
ments, we need to consider these assumptions and their relationships to communication tasks. We will show
that in general the communications between PE’s (or the network topology) cannot be completely decoupled
from the hardware complexity of the PE’'s themselves. After giving a relationship between PE space complexity
and interconnection capability, we will be able to identify what reasonable assumptions on the PE complexity
are for the optics and electronics cases. These assumptions will be used in assessing the performance of different
communication tasks on network models. In this paper the term PE complexity refers to the space complexity
of each PE. We will not discuss time complexity of individual PE’s.



For simplicity, we will assume the bandwidth of each [/O line to a PE is fixed and 1s given. Thus we are a
priori not considering one of the potential advantages of an optical system over an electronic one. We will, how-
ever, consider the effect of the number of I/O lines to a PE. In the case of input lines, the signals coming in
may be immediately combined, or may be kept separate and stored into separate registers. Consider the former
case. Examples include forming the sum of all simultaneous inputs or just forming the logical AND over all of
them. In the simplest case of a logical operation over all inputs, the PE must accommodate the required fan-in.
To do this with gates of a fixed size (fixed fan-in per gate) requires O (; ) gates for /; input lines. Thus the PE
complexity grows O (I;) merely to accommodate the input lines. If the input gates are allowed to have a fan-in
that increases with [;, then the PE complexity still grows with /; because the complexity of the input gates
(instead of the number of input gates) grows O (l;). In the case of the PE keeping the input.signals separate,
O (I;) gates are needed for the input, and if stored into memory then [; memory cells are required. Thus the PE
complexity must be at least O (l;); if the PE can a.rbitrarilg' rearrange the signals in a small number of time
steps then the PE complexity grows even faster (e.g., O (L;“) if a crossbar is used). Similar arguments can be
applied to the case of PE output lines. Thus a PE with {; input lines and !, output lines has complexity that
grows O (; +, ) in the simpler cases; if too many demands are placed on its ability to process or move these sig-
nals around, then its complexity grows faster.

Implications of this lie in the communication ability of PE networks, particularly in the optics case. With
electronic technology, the number of 1/0 lines to a PE is generally quite limited and this limits the ability of the
PE’s to communicate. This is due to limited pinout, cost of interconnections, etc. The PE complexity is in
practice not an issue for communications. In the optics case, however, there are no pinout restrictions and many
parallel interconnection lines are feasible. However, there are limitations on the total number of interconnec-
tions in an optical PE network; these are due to the PE complexity itself. In other words, the PE's have to be
able to accommodate all of the I/O lines. The optics case apparently allows a balance between the interconnec-
tions and the PE complexity; in the electronics case the interconnections are further limited by technology fac-
tors.

Consider a fully connected array, that is one in which every PE has a hardwired line to every other PE.
For a network of N PE’s, the complexity of each PE grows O (N) because it has N [/O lines; therefore the
total complexity of all the PE’s is O (N?). In this case the total number of interconnection lines is also O(N?).
The total complexity of the PE network is O (N?).

We consider three specific examples of PE complexity in the case of a fully connected array.

Example 1. The PE's are made up of binary gates, either optical or electronic. This example was
included in the discussion above; each PE has O (N') gates and has complexity that grows O (N) in the simplest
cases.

NxN

Fig. 4. Optical inner product matrix-vector multiplier as an example of a fully connected array.

Example 2. Consider the optical matrix-vector multiplier of Fig. 4. This is also a fully connected array,
because in general every input or source is connected to every output or detector. Thus we expect each “PE” to
have complexity at least O (N). Each PE can be viewed as a detector, any thresholding, A/D, or processing
electronics, and a source (which is part of the same PE if feedback is included). The 2-D SLM or mask is con-
sidered part of the interconnections in this case. Even for the simple case of binary sources and mask transmit-
tances, each detector must distinguish O (V) levels. In addition, there are accuracy requirements on the source
intensities for these levels to be distinguishable. We conjecture that the PE complexity must increase at least
O (N). This is clear if we assume that the ability to distinguish an analog signal to within 1 part in N implies
a complexity of O (N). Thus the total complexity of all PE’s in the network must grow at least O {N?).



Example 3. Consider again the optical matrix-vector multiplier, but now define each PE to include the
multiplies also. Each PE is physically distributed, and includes N mask pixels (shown), I detector (shown), and
1 source. There are N PE’s; each PE performs N multiplies and N adds, and has N spatially separate input
lines (at the 2-D mask). The network is still fully connected, as each source (PE output) fans out to all PE’s. In
this case, the accuracy requirements on the sources, detectors and ensuing electronics are the same as in the pre-
vious example. In addition to this the accuracy of each multiply (the pixel transmittance) must be taken into
account; one PE contains N of these multiplies and the accuracy (and therefore the complexity) of cack multi-
ply must increase with N. Thus the complexity of each-PE must increase faster than O (N ); the complexity of
the network grows faster than O (N?). This is reflected in the hardware requirements in making a large fully
connected (optical} system. -

Communication Tasks on Network Models

In this section we will give the time required to execute different communication tasks on different network
topologies. We are concerned with fine-grained systems, that is systems with a large or very large number of
relatively simple PE’s. As a minimum, we assume each PE can store its own address so that it knows where it is
located. Many algorithms can become quite difficult without this feature. This implies that the PE complexity
must be allowed to grow O (logN ).

In an electronic system, the number and length of interconnections is important and ideally should be
minimized. The number of connections to each PE or node of the graph is limited to small values due to I/O
constraints. This limits the connectivity of graphs that can be efficiently implemented. The degree of a graph is
the number lines connected to each node. Electronic systems limit the degree of the graph to a relatively small
value; for large enough /V the degree must be a constant, independent of N .

Optical systems have no I/O restrictions on the PE’s per se, but as discussed above the degree of the graph
will be limited by the complexity of the PE’s. Since the PE complexity must be at least O (logN) anyway, in
the optics case the degree of the graph can easily be O (logN). Larger degrees, e.g. O (N'/?), where p >2 may
also be feasible.

The time required for different interprocessor communication tasks performed on diflerent fixed networks
has been studied by Kushner and Rosenfeld (1983) and Levitan (1985). They show substantially reduced compu-
tation time for many communication tasks on networks of larger degree (e.g. hypercubes), as compared to
simpler networks such as arrays. Augmented trees (Uhr, 1983) and bushy trees may also permit reduced time
for these tasks. Examples of bushy trees are trees of degree 1+m!/?  which have diameter 2p , where m is the
number of leaf nodes and is a powerof p.

In order to calculate communication times on a network model, certain assumptions need to be specified.
We assume that all messages are the same size and are routed to their destinations over the fixed connection net-
work by passing over links and through PE’s. One time step is defined as the time for a PE to send a message,
the message to travel over one link, be received by the PE at the end of the link, and for the PE to perform any
computation on the message (such as altering its tag or combining messages that arrive simultaneously). The
processors operate synchronously. Finally, the number of messages that can simultaneously be accepted or out-
put by each PE must be considered. In the electronics case, the number of messages that can be simultaneously
accepted by a PE is relatively small (because of the degree limitation), and will probably need to be a constant
independent of N (Kushner and Rosenfeld, 1983). For simplicity this can be taken to be 1. A PE can output
identical copies of the same message, but not multiple messages. For the optics case, we assume only a limit on
the PE complexity; this then dictates how flexible the inputs and outputs of the PE can be. We limit the PE
complexity to the degree of the network or logN, whichever is greater. Each PE can accept d simultaneous
messages, where d is the degree of the network, and may increase with N. Each PE can output 4 identical
messages simultaneously; outputting different messages simultaneously (in conjunction with inputing several
messages simultaneously) can involve an increase in PE complexity, depending on what the PE is required to do.

Kushner and Rosenfeld (1983) classify communication tasks as one-to-many, many-to-one, and one-to-one.
One to many tasks include broadecasting, in which one PE (the root if there is a2 node so distinguished) sends the
same message to many other PE’s, in the worst case to all other PE’s. In the more general one-to-one case the
messages may be altered as they travel, e.g. each message could have a value that is incremented by one each
time it passes through a PE; thus it keeps track of the distance it has traveled. Broadcasting must take time at
least as long as the distance to the farthest node to be reached.

Many to one tasks must be divided into two classes. In both classes many PE's all send messages to the
same PE (root). In one case, condensing, the messages can be combined (e.g. added) in route to the destination.
An example of this would be for computing the area of a region - each PE in the region sends a 1, and the sum
of all messages is equal to the area. This is essentially the inverse of broadcasting, and the time is again limited



by the farthest distance to be traveled. In the case of funneling, the messages must be kept separate. This in
general takes much longer. If all N PE’s send messages to be funneled, then the time is bounded below by
N /d, where d is the network degree, because of the “bottleneck’ at the destination node. Whether this lower
bound is achieved depends on the network topology.

One to one tasks are permutations, in which each PE sends a message to one other PE. In the worst case,
half the PE’s send messages to the other half, each message with a different destination PE. This of course must
take time at least equal to the farthest distance to be traveled (the diameter of the network for the worst case).
In general, bottlenecks will cause the time to be larger than the network diameter; actual time again depends on
the topology.

Table 5. Order of magnitude time for communication tasks on a fixed interconnection PE network with N PE’s.

Broadcasting
Network Complexity and
Topology Degree of each PE Condensing Permuting Funneling
Array (nearest 4 logN vN N7 N
neighbor)
Tree 3 log N logN ) N A
Hypercube log N logN logN M logN M N _dw
log N
Tree! 1+b =N/? N log, N NV B NIU/p )
Fullv connected N N 1 1 1@
(1) From Kushner and Rosenfeld (1983).
(2) b = branching factor of tree = m'/? where m = no. of leaf nodes. p = radius = no. of levels — 1.
p 21l
(3) Allowing the root node to have complexity O (N%?),
{(4) Could be higher depending on algorithm requirements
Nearest- Nexghbor Array Binary Tree

Fylly Connected

4-Cube

Fig. 5. Examples of network topologtes.

The worst case order of magnitude communication time for several networks of different topologies and
degrees is given in Table 5. The array and binary tree take the same time under our optics and electronics
assumptions. The optics assumptions allow degrees that are a function of N, and further reduce the time for
funnelling (from time =N in some cases. Examples of nearest neighbor array, tree, hypercube, and fully con-
nected networks are shown in Fig. 5.




CONCLUSIONS

We have studied abstract models of parallel machines at the computational paradigm level. By attempting
to abstract out the limitations of electronic systems, we have found some potential advantages of optical com-
puting systems in contention-free parallel read access to global memories, associated reconfigurable interconnec-
tion networks, and in implementing PE networks of increased degree over electronics. We have also pointed
out that the connectivity of even optical systems is not unlimited; it is limited by the complexity of the com-
ponents that are being connected.
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2.7 Acousto-optic Signal Processing

A final area of study has been in high speed acousto-optic systems for matrix-matrix multi-
plication. The attached paper “Acousto-Optic Matrix-Matrix Multiplier” by D.S. Kalivas, G.

Albanese and A.A. Sawchuk in Optics Letters, Vol. 13, pp. 291-293, April 1988 summarizes

these results.
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Acousto-optic matrix-matrix multiplier
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A new architecture for an optical matrix-matrix multiplier is presented. It is based on the beam-modulation and
beam-deflection properties of Bragg acousto-optic cells. Its parallel structure makes it very fast. Some physical

limitations are discussed.

There exist many architectures for optical matrix alge-
braic processors.! Recently, several architectures
that use acousto-optic cells have been proposed.2? An
interesting frequency-multiplexed pipelined matrix-
vector processor was presented by Casasent et alt
This system is a systolic processor because the inputs
enter in a clocked time-sequential pipeline manner.
It is a beam-deflector-based processor, which can also
be used for matrix-matrix multiplication. In this
Letter we present a matrix-matrix multiplier that
makes use of both the beam-deflection and the beam-
modulation properties of acousto-optic (AQ) cells.
We describe the architecture of the processor and ex-
plain how it works and consider some basic features
and limitations from a quantitative point of view.

Bragg cells have two basic properties that can be
utilized in the design of an AQ algebraic processor.5¢
The first is the modulation of the intensity of a light
beam, which is obtained by modulation of the ampli-
tude of the acoustic wave. The second property is the
deflection of light beams in different directions caused
by frequency modulation of the acoustic wave. Our
processor exploits both properties.

The architecture is shown schematically in Fig. 1,
and a top view is shown in Fig. 2. It multiplies two
matrices A and B of dimension N X N. Various stops
and unwanted diffraction orders are omitted for clar-
ity. At the left is AO cell array A, composed of N

plane A

AO céllauay A fens
Fig. 1. Side view of the processor.
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independent AO cells. The direction of propagation
of the acoustic waves in each AO cell is oriented verti-
cally. The N cells are arranged side by side horizon-
tally. The illumination on AO cell array A shown by
the arrows at the left of Fig. 1 is a plane monochromat-
ic wave of constant complex amplitude. The plane
wave front is parallel to the left of the AQ cell array A,
and its aperture is large enough to illuminate array A
completely. Each row of the matrix A drives in paral-
lel each cell of AQ cell array A (plane A). The single
long AO cell B (plane B) in Fig. 1 is oriented vertically.
It is shown artificially divided into N levels in Fig. 1 for
the purpose of explaining the operation of the proces-
sor. The AO cell B is driven by a vector b generated
by row scanning? the matrix B. Let us call b;; (i = 1,
2,...,N;j=1,2,...,N) the elements of the matrix B.
Then b is equal to the vector {b;1, bys, ..., 1N, Dot . . .,
ban, ..., bty ..., BNN)Y, where t denotes the matrix
transpose. In the illustrations of Figs. 1 and 2, both
lenses have the same focal length f;, and all five com-
ponents of the system are spaced at the same distance
fr- The lens located between planes A and B brings
the light from plane A to a line focus in plane B (Fig.
2), and the AO cells in plane A provide a vertical
deflection and amplitude modulation. At the right is
an instantaneous detector array C having N X N ele-
ments, which gives the output matrix C = A X B,

In each AQ cell of the array A a transducer launches

plane B8

]

%

bj‘.("'u)

AO cell B lens detecfor arroy C
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Fig. 2. Top view of the processor.

a multifrequency acoustic wave. Let us consider the
ith AO cell, which is fed with the ith row of the matrix
A. Its input has N frequency components. The jth
component has amplitude a;; and frequency f;. Thus
the beam incident upon this cell is split into N beams.
These beams have intensities proportional to the ma-
trix elements a;; ( = 1, 2,..., N) and are deflected at
different angles 8;, which are proportional to the fre-
quencies f;. The frequency f; is such that the de-
flected beam is directed to the jth level of the AO cell
B.

At this jth level of AO cell B there are N incident
beams from each of the N AQ cells of array A. Syn-
chronized with these beams, AQ cell B contains a
propagating multifrequency acoustic wave with am-
plitudes bjx (k= 1,2, ..., N) and frequenciesfjz (k = 1,
2,...,N). Each one of these incident beams is split
into N beams having intensities proportional to a;;b;x
(k=1,2,...,N)and is deflected at different angles 8,
determined by the frequencies fix (¢ = 1, 2,..., N).
The frequency fj» is such that the corresponding de-
flected beam is directed vertically from the jth level of
AO cell B toward the kth row of the detector array.
The horizontal angular offset of this beam is converted
by the second lens to a spatial location in the ith
column. Thus the combination of these two deflec-
tions directs the beam to the (i, k)th element of the
detector array. At the same element (i, k) all the
beams having intensities proportional to a;;bj (G = 1,
2,..., N) are summed and detected. The result is
proportional to the element ¢, of the matrix C.

We denote by T the time it takes for the elements of
matrix B toenter AQ cell B. After matrix B enters the
system, the matrix-matrix multiplication is done in-
stantaneously; thus the total processing time is equal
to T. The equivalent systolic matrix-matrix proces-
sor, presented by Casasent et al.,? has a total process-
ing time equal to 27.

The processing time can be drastically reduced if an
array of AO cells as shown in Fig. 3 is substituted for
the single long AO cell B. AO cell array B is composed
of N independent AO cells whose direction of propaga-
tion is oriented vertically, and these N cells are
stacked end to end vertically. Each AO cell of array B
is driven in parallel by the corresponding row of the
matrix B, thus eliminating the row scanning needed to
input the entire matrix B as before. For example, the

Jjth AO cell is driven by the jth row of the B matrix
(bj1, ...+ bjk, ..., bn). The new total processing time
is equal to T/N. This time reduction is achieved at
the cost of increased architectural complexity.

The AO cells described above serve as light modula-
tors and beam deflectors. The equations that deter-

mine these two operations are®

= sin <,L L) w

V2 cos 8

where 7 is the diffraction efficiency, L is the length of
interaction between light and sound (i.e., the thick-
ness of the AO cell along the direction of light propaga-
tion), X is the wavelength of light in free space, /, is the
acoustic intensity, M is a constant having dimensions
of square meters per watt defined by the AO cell mate-
rial, and fp is the Bragg angle given by

A
6 = sin”! (—f—") : )

2nu

Here f; is the acoustic frequency, u is the phase veloci-
ty of the sound, and n is the optical index of refraction
of the AO cell material. Assuming small acoustic
power and a small Bragg angle, we can further simplify
the above equations to

w:L’MI 3)
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AQ cell array B
Fig. 3. AO cell array B.
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From relation (3) we see that the diffraction efficiency
is approximately linearly proportional to the acoustic
intensity /,. Thus modulation of the acoustic intensi-
ty results in modulation of the diffracted light intensi-
ty. Also, relation (4) shows that the deflection angle
20 is approximately linearly proportional to the
acoustic frequency.

The most important parameters in this processor
are the number of resolvable beam spots, or, in other
words, the dimension of the matrices that can be mul-
tiplied and the computation time T. In addition, the
processor must operate with acceptable efficiency.

The number of resolvable beam spots is given by®

_ wDAf , )
4u cosfly

where Af is the bandwidth of the acoustic wave around
the center frequency fo and D is the diameter of the
illuminating beam measured along the direction of
acoustic-wave propagation. Thus the basic parame-
ter that determines the dimension N is Af, and it must
satisfy the two conditions®

Afsf()y (6)
2nu?

Af < . N

f AL,

The condition of relation (6) ensures modulation with-
out nonlinear distortion, while relation (7) arises from
the need to maintain the proper Bragg angle between
incident light and acoustic waves in the AO cell (a
phase-mismatch condition). These conditions also
affect the thickness L of the AO cell. To obtain a large
N asmall L is desirable, but this results in low efficien-
cy {Eq. (1)]. Thus there is a trade-off in assigning a
value for L. This problem can be overcome by using a
beam-steering technique.®

We now consider a practical example and evaluate
the dimension N, the computation time T, and the
diffraction efficiency 5 for the system shown in Fig. 1.
Let the medium of the AO cells be PbMoQy, which has
the parameters n = 2.4, u = 3.75 km/sec,and M = 7.3 X
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10~ m%/W. Choosing A = 0.5145 um, f, = 100 MHz,
Af =100 MHz, I, = 260 mW/cm?2, L = 1¢em,and D = 3
mm, we obtain N = 60, T'= 60 usec,and n = 0.34. [fwe
use instead the AO cell array B shown in Fig. 3 in the
system of Fig. 1, the computation time is 1 usec.
These results show that the processor is very fast and
operates with acceptable efficiency.

A final consideration concerns the phase mismatch
of the AO cells. We have assumed that the beams
incident upon the cells arrive at the correct angle for
Bragg diffraction. While this is true for AO cell array
A (Fig. 1), it is not generally true for AO cell B. In
fact, the beams incident upon cell B necessarily arrive
at different angles because they are the output beams
of the AO cell array A and cannot arrive at the correct
Bragg angle. This phase mismatch results in a de-
crease in the number of resolvable spots, although it
may be possible to reduce the effects of the phase
mismatch by the use of correcting lenses or lens arrays.

In this Letter we have presented a matrix-matrix
multiplier. Its operation is based on the modulation
and deflection properties of AO cells. It is fast be-
cause of its parallel architecture. The dimension of
the matrices that it can multiply is sufficiently large.
This processor can be used for implementations of
algorithms that require matrix-matrix multiplica-
tions such as LU decomposition, QR decomposition,
direct solution of linear equations, and Kalman filter-
ing3
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2. K.S. Huang, B.K. Jenkins, and A.A. Sawchuk, “Programming A Digital Optical Cellular

Image Processor,” OSA Annual Meeting, Rochester, NY, October 18-23, 1987.

3. K.S. Huang, B.K. Jenkins, and A.A. Sawchuk, “Optical Cellular Logic Architectures Based
on Binary Image Algebra,” Proc. IEFE Computer Society Workshop on Computer Archi-

tecture for Pattern Analysis and Machine Intelligence, Seattle, WA, October 1987.

4. K.S. Huang, B.K. Jenkins. and A.A. Sawchuk, “A Cellular Hypercube Architecture for
Image Processing,” Applications of Digital Image Processing X, Proc. of SPIE-The Inter-

national Society for Optical Engineering, Vol 829, San Diego, CA, August 1987.
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9.

. K.S. Huang, B.K. Jenkins, and A.A. Sawchuk, “Optical Symbolic Substitution and Pat-

tern Recognition Algorithms Based on Binary Image Algebra,” submitted to, ICO Topical

Meeting on Optical Computing, Toulon, France, August 29 - September 2, 1988.

K.S. Huang, A.A. Sawchuk, B.K. Jenkins, P. Chavel, J.M. Wang, A.G. Weber, C.H. Wang,
and 1. Glaser, “Implementation of A Prototype Digital Optical Cellular Image Processor
(DOCIP),” submitted to, ICO Topical Meeting On Optical Computing, Toulon, France,

August 29 - September 2, 1988.

. B.K. Jenkins and A.A. Sawchuk, “Optical Cellular Logic Architectures for Image Pro-

cessing”, Proc. IEEE Computer Society Workshop on Computer Architectures for Pattern

Analysis and Image Processing, Miami Beach, FL, November 1985.

A.A. Sawchuk and B.K. Jenkins, “Optical Cellular Logic Processors”, 1985 Annual Meet-
ing, Optical Society of America, Washington, D.C., October 1985; Journal of the Optical

Society of America-A, Vol. 2, p. P26, December 1985.

B.K. Jenkins, “Recent Developments in Digital Optical Computing”, 1985 Annual Meet-
ing, Optical Society of America, Washington, D.C., October 1985; Journal of the Optical

Socicty of America-a, Vol. 2, p. P22, December 1985.
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A A. Sawchuk, “Prospects for Optical Computing and Interconnections”, International Con-

ference on Lasers '85, Las Vegas, December 2-6, 1985, (invited paper).

B.K. Jenkins and A.A. Sawchuk, “Binary Optical Computing Architectures”, Optics News,

Vol. 12, No. 4, pp. 25-26, April 1986.

B.K. Jenkins and A.A. Sawchuk, “Development and Future of Optical Computing”, Panel
Members, Optical Computing Symposium, Society of Photo-Optical Instrumentation Engi-
neers '8 Optoelectronics and Laser Applications in Science and Engineering, Los Angeles,

CA, January 1986.

. A.A. Sawchuk, “Numerical Optical Computing Techniques”, Proc. 13th Congress of Inter-

national Commission for Optics, ICO-13, Sapporo, Japan, August 20-24, 1984.

. B.K. Jenkins and A.A. Sawchuk, “Characteristics of Digital Optical Processors™, Proc.

IFEEE Global Telecommunications Conf., Atlanta, GA, November 26-29, 1984.
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. B.K. Jenkins, “Architectural Characteristics of Optical Logic Systems”, Proc. IEEE Com-

puter Conf., San Francisco, CA, February 26-28, 1985.

B.K. Jenkins and A.A. Sawchuk, “Computer Generated Hologram Considerations for Se-
quential Optical Logic Interconnections”, presented at Optical Society of America 1984

Annual Meeting, San Diego, CA, October 29 - November 2, 1984.

A.A. Sawchuk and B.K. Jenkins, “Algorithms for Digital Optical Processors, Tech. Digest
for Topical Meeting on Optical Computing, Optical Society of America, March 18-20, 1985,

Incline Village, NV, pp. TuA2-1 - TuA2-4.

K.S. Huang, B.K. Jenkins and A.A. Sawchuk, “Binary Image Algebra and Digital Optical
Cellular Image Processors”, Topical Meeting on Optical Computing Technical Digest Series

1987, Vol. 11, Optical Society of America, Paper MBS, pp. 20-23, Washington, D.C., 1987.



